论文标题

边缘定期驾驶有限晶格中的局部schrödinger猫状态

Edge Localized Schrödinger Cat States in Finite Lattices via Periodic Driving

论文作者

Bhuiyan, Asadullah, Marsiglio, Frank

论文摘要

Floquet状态已被用来描述使用紧密结合模型或使用连续模型的定期驾驶对晶格系统的影响,在该模型中使用了像Kronig-Penney一样的描述,用于在一个维度上为空间周期性系统建模。这些研究的许多研究都集中在有限的系统上,这些研究的结果与边界效应的结果不同于无限晶格系统的结果。在有限系统的情况下,紧密结合描述与连续晶格模型之间的结果仍然存在差异。在紧密结合模型中,定期驾驶时间依赖于时间依赖的场会导致特殊驾驶幅度以频段内所有准耐药的崩溃。另一方面,在Continuum模型中,一对几乎取消的边缘带出现了,并且随着场振幅的增加,散装带的凹陷。我们解决了这些差异,并解释了这些边缘频段如何代表schrödinger猫样状态,并在整个晶格中进行有效的隧穿。此外,我们表明,当外部驾驶振幅引起散装带的崩溃时,这些延伸的猫状状态在边缘位置变得完美局限。

Floquet states have been used to describe the impact of periodic driving on lattice systems, either using a tight-binding model, or by using a continuum model where a Kronig-Penney-like description has been used to model spatially periodic systems in one dimension. A number of these studies have focused on finite systems, and results from these studies are distinct from those of infinite lattice systems as a consequence of boundary effects. In the case of a finite system, there remains a discrepancy in the results between tight-binding descriptions and continuous lattice models. Periodic driving by a time-dependent field in tight-binding models results in a collapse of all quasienergies within a band at special driving amplitudes. In the continuum model, on the other hand, a pair of nearly-degenerate edge bands emerge and remain gapped from the bulk bands as the field amplitude increases. We resolve these discrepancies and explain how these edge bands represent Schrödinger cat-like states with effective tunneling across the entire lattice. Moreover, we show that these extended cat-like states become perfectly localized at the edge sites when the external driving amplitude induces a collapse of the bulk bands.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源