论文标题

基于距离相关性的大脑功能连通性估计和非凸多任务学习用于发育功能磁共振成像研究

Distance Correlation Based Brain Functional Connectivity Estimation and Non-Convex Multi-Task Learning for Developmental fMRI Studies

论文作者

Xiao, Li, Cai, Biao, Qu, Gang, Stephen, Julia M., Wilson, Tony W., Calhoun, Vince D., Wang, Yu-Ping

论文摘要

静止状态功能磁共振成像(RS-FMRI)衍生的功能连接模式已被广泛利用,用于描述人脑在健康,发育和神经精神疾病中的全球功能组织。在本文中,我们研究了男性和女性在年龄预测框架中的功能连通性的不同。我们首先使用距离相关而不是Pearson的相关性估算利益区域(ROI)之间的功能连接。距离相关性作为一种多元统计方法,探讨了各个ROI中素脉时间课程的空间关系,并测量线性和非线性依赖性,从而捕获了ROI之间相互作用之间更复杂的信息。然后,提出了一种新型的非凸多任务学习(NC-MTL)模型来研究功能连通性与年龄相关的性别差异,在这些性别连通性中,每个性别组的年龄预测都被视为一个任务。具体来说,在提出的NC-MTL模型中,我们引入了一个复合正规器,其结合使用了非convex $ \ ell_ {2,1-2} $和$ \ ell_ {1-2} $正规化术语,以选择常见和特定于任务的特定功能。最后,我们验证了所提出的NC-MTL模型,以及基于距离相关的功能连接性,以预测两种性别的年龄的费城神经发育队列的RS-FMRI。实验结果表明,所提出的NC-MTL模型在年龄预测中优于其他竞争的MTL模型,并表征了功能连通性模式中的发展性别差异。

Resting-state functional magnetic resonance imaging (rs-fMRI)-derived functional connectivity patterns have been extensively utilized to delineate global functional organization of the human brain in health, development, and neuropsychiatric disorders. In this paper, we investigate how functional connectivity in males and females differs in an age prediction framework. We first estimate functional connectivity between regions-of-interest (ROIs) using distance correlation instead of Pearson's correlation. Distance correlation, as a multivariate statistical method, explores spatial relations of voxel-wise time courses within individual ROIs and measures both linear and nonlinear dependence, capturing more complex information of between-ROI interactions. Then, a novel non-convex multi-task learning (NC-MTL) model is proposed to study age-related gender differences in functional connectivity, where age prediction for each gender group is viewed as one task. Specifically, in the proposed NC-MTL model, we introduce a composite regularizer with a combination of non-convex $\ell_{2,1-2}$ and $\ell_{1-2}$ regularization terms for selecting both common and task-specific features. Finally, we validate the proposed NC-MTL model along with distance correlation based functional connectivity on rs-fMRI of the Philadelphia Neurodevelopmental Cohort for predicting ages of both genders. The experimental results demonstrate that the proposed NC-MTL model outperforms other competing MTL models in age prediction, as well as characterizing developmental gender differences in functional connectivity patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源