论文标题

代数$λ$的$ a+λa$的大小

On the size of $A+λA$ for algebraic $λ$

论文作者

Krachun, Dmitry, Petrov, Fedor

论文摘要

对于有限的集合$ a \ subset \ mathbb {r} $和真实的$λ$,让$ a+λa:= \ {a+λb:\ \,a,a,b \ in a \} $。将Freiman的结构定理与少量的常数与Prékopa的离散类似物结合在一起 - Leindler不等式,我们证明了下限的$ | a+| a+\ sqrt {2} a | \ geq(1+ \ sqrt {1+\ sqrt {2}} {2})本质上很紧。我们还对任意代数$λ$的$ \ liminf | a+λa|/| a | $的值进行了猜想。最后,对于给定的线性操作员$ k+\ \ \ \ \ \ \ \ \ mathcal $ \ mathcal {t} \ in \ operatorNAMe {end}(\ mathbb {r}^d)$和一个compact set $ k \ subset $ kathbb {r r} d $,我们证明了$ k+\ mathcal {t} k $的$ k+\ \ \ \ \ mathcal {t} k $的紧密下限。这种连续的结果支持猜想,并产生其中的上限。

For a finite set $A\subset \mathbb{R}$ and real $λ$, let $A+λA:=\{a+λb :\, a,b\in A\}$. Combining a structural theorem of Freiman on sets with small doubling constants together with a discrete analogue of Prékopa--Leindler inequality we prove a lower bound $|A+\sqrt{2} A|\geq (1+\sqrt{2})^2|A|-O({|A|}^{1-\varepsilon})$ which is essentially tight. We also formulate a conjecture about the value of $\liminf |A+λA|/|A|$ for an arbitrary algebraic $λ$. Finally, we prove a tight lower bound on the Lebesgue measure of $K+\mathcal{T} K$ for a given linear operator $\mathcal{T}\in \operatorname{End}(\mathbb{R}^d)$ and a compact set $K\subset \mathbb{R}^d$ with fixed measure. This continuous result supports the conjecture and yields an upper bound in it.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源