论文标题

在非正交傅立叶基础中稀疏的学习集功能

Learning Set Functions that are Sparse in Non-Orthogonal Fourier Bases

论文作者

Wendler, Chris, Amrollahi, Andisheh, Seifert, Bastian, Krause, Andreas, Püschel, Markus

论文摘要

机器学习在离散域上的许多应用,例如在推荐系统中或拍卖中的学习偏好功能,可以简化为估计傅立叶域中稀疏的设置函数。在这项工作中,我们介绍了一种新的算法系列,用于学习傅立叶式套件集功能。它们最多需要$ NK -K \ log_2 k + k $ Queries(设置功能评估),在傅立叶系数的轻度条件下,其中$ n $是接地套件的大小和$ k $的非零傅立叶系数的数量。与其他集中在正交Walsh-Hadamard变换上的工作相反,我们的小说算法运作了最近引入的非正交傅立叶变换,这些变换提供了不同的傅立叶范围。这些自然会在建模时,例如形成替代品和补充的项目集。我们证明了对几种现实应用程序的有效性。

Many applications of machine learning on discrete domains, such as learning preference functions in recommender systems or auctions, can be reduced to estimating a set function that is sparse in the Fourier domain. In this work, we present a new family of algorithms for learning Fourier-sparse set functions. They require at most $nk - k \log_2 k + k$ queries (set function evaluations), under mild conditions on the Fourier coefficients, where $n$ is the size of the ground set and $k$ the number of non-zero Fourier coefficients. In contrast to other work that focused on the orthogonal Walsh-Hadamard transform, our novel algorithms operate with recently introduced non-orthogonal Fourier transforms that offer different notions of Fourier-sparsity. These naturally arise when modeling, e.g., sets of items forming substitutes and complements. We demonstrate effectiveness on several real-world applications.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源