论文标题
通过在控制系统中的应用有效分配神经网络的鲁棒性分析
Robustness Analysis of Neural Networks via Efficient Partitioning with Applications in Control Systems
论文作者
论文摘要
现在,神经网络(NNS)通常在必须在不确定环境中运行的系统上实施,但是正式分析这种不确定性如何传播到NN输出的工具尚不司空见名。计算NN输出集的紧密界限(给定输入集)提供了与NN决策相关的置信度的度量,对于在安全至关重要系统上部署NN至关重要。最近的工作近似于通过非线性激活或划分不确定性集的集合的传播,以在可能的NN输出集合集合中提供保证的外部结合。但是,界限会导致过度的保守主义和/或计算对于在线分析太慢。本文统一了传播和分区方法,以提供鲁棒性分析算法的家族,该算法比相同数量的计算时间(或以所需的准确性水平减少计算工作)的现有作品更紧密的界限。此外,我们提供了新的分区技术,这些技术意识到它们当前的界限估计和所需的边界形状(例如,下界,加权$ \ ell_ \ eld_ \ infty $ -ball,convex hull),从而进一步改善了计算电视权衡。该论文展示了提出的鲁棒性分析框架的更紧密的界限,并减少了保守主义,并提供了无模型RL和前向运动学学习的示例。
Neural networks (NNs) are now routinely implemented on systems that must operate in uncertain environments, but the tools for formally analyzing how this uncertainty propagates to NN outputs are not yet commonplace. Computing tight bounds on NN output sets (given an input set) provides a measure of confidence associated with the NN decisions and is essential to deploy NNs on safety-critical systems. Recent works approximate the propagation of sets through nonlinear activations or partition the uncertainty set to provide a guaranteed outer bound on the set of possible NN outputs. However, the bound looseness causes excessive conservatism and/or the computation is too slow for online analysis. This paper unifies propagation and partition approaches to provide a family of robustness analysis algorithms that give tighter bounds than existing works for the same amount of computation time (or reduced computational effort for a desired accuracy level). Moreover, we provide new partitioning techniques that are aware of their current bound estimates and desired boundary shape (e.g., lower bounds, weighted $\ell_\infty$-ball, convex hull), leading to further improvements in the computation-tightness tradeoff. The paper demonstrates the tighter bounds and reduced conservatism of the proposed robustness analysis framework with examples from model-free RL and forward kinematics learning.