论文标题

骆驼项目:带机器学习模拟的宇宙学和天体物理学

The CAMELS project: Cosmology and Astrophysics with MachinE Learning Simulations

论文作者

Villaescusa-Navarro, Francisco, Anglés-Alcázar, Daniel, Genel, Shy, Spergel, David N., Somerville, Rachel S., Dave, Romeel, Pillepich, Annalisa, Hernquist, Lars, Nelson, Dylan, Torrey, Paul, Narayanan, Desika, Li, Yin, Philcox, Oliver, La Torre, Valentina, Delgado, Ana Maria, Ho, Shirley, Hassan, Sultan, Burkhart, Blakesley, Wadekar, Digvijay, Battaglia, Nicholas, Contardo, Gabriella, Bryan, Greg L.

论文摘要

我们通过机器学习模拟-Camels-项目介绍宇宙学和天体物理学。骆驼是一套4,233个宇宙学模拟的套件(25〜H^{ - 1} {\ rm mpc})^3 $每个音量:2,184个最先进的(磁动力学模拟)运行AREPO和gizmo代码,使用同一baryonic simber and-inlunny noiflon 9模拟。骆驼项目的目的是为不同的观察物提供理论预测,这是宇宙学和天体物理学的函数,它是旨在训练机器学习算法的宇宙学(磁性)水动力模拟的最大套件。骆驼包含数千种不同的宇宙学和天体物理模型,以不同的方式,$ω_m$,$σ_8$,以及在超过1000亿美元的粒子和流体元素的进化之后,控制了恒星和AGN反馈,以控制恒星和AGN的反馈。我们详细描述了模拟,并表征了物质功率谱,宇宙恒星形成速率密度,星系恒星质量函数,光晕baryon级分和几个星系缩放关系的大量条件。我们表明,Illustristng和Simba套件在完整的参数空间上产生了大致相似的星系性能分布,但对物质功率谱的晕晕baryon级分和重态效果明显不同。这强调了对重型效应的边缘化需要从宇宙学调查中提取最大信息量的必要性。我们使用多种机器学习应用程序说明了骆驼的独特潜力,包括非线性插值,参数估计,符号回归,具有生成对抗网络(GAN)(GAN)的数据生成,降低维度和异常检测。

We present the Cosmology and Astrophysics with MachinE Learning Simulations --CAMELS-- project. CAMELS is a suite of 4,233 cosmological simulations of $(25~h^{-1}{\rm Mpc})^3$ volume each: 2,184 state-of-the-art (magneto-)hydrodynamic simulations run with the AREPO and GIZMO codes, employing the same baryonic subgrid physics as the IllustrisTNG and SIMBA simulations, and 2,049 N-body simulations. The goal of the CAMELS project is to provide theory predictions for different observables as a function of cosmology and astrophysics, and it is the largest suite of cosmological (magneto-)hydrodynamic simulations designed to train machine learning algorithms. CAMELS contains thousands of different cosmological and astrophysical models by way of varying $Ω_m$, $σ_8$, and four parameters controlling stellar and AGN feedback, following the evolution of more than 100 billion particles and fluid elements over a combined volume of $(400~h^{-1}{\rm Mpc})^3$. We describe the simulations in detail and characterize the large range of conditions represented in terms of the matter power spectrum, cosmic star formation rate density, galaxy stellar mass function, halo baryon fractions, and several galaxy scaling relations. We show that the IllustrisTNG and SIMBA suites produce roughly similar distributions of galaxy properties over the full parameter space but significantly different halo baryon fractions and baryonic effects on the matter power spectrum. This emphasizes the need for marginalizing over baryonic effects to extract the maximum amount of information from cosmological surveys. We illustrate the unique potential of CAMELS using several machine learning applications, including non-linear interpolation, parameter estimation, symbolic regression, data generation with Generative Adversarial Networks (GANs), dimensionality reduction, and anomaly detection.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源