论文标题
IC SN2020OI类型和宽衬的IC SN2020BVC的近红外和光学观察:一氧化碳,灰尘和高速度超新星弹射器
Near-Infrared and Optical Observations of Type Ic SN2020oi and broad-lined Ic SN2020bvc: Carbon Monoxide, Dust and High-Velocity Supernova Ejecta
论文作者
论文摘要
我们使用Gemini,LCO,Soar和其他基于地面的望远镜,介绍了Galaxy M100中的IC Supernova型(SN)2020OI的近红外和光学观察。自爆炸以来的第63天,SN2020OI的近红外光谱显示出强大的CO排放和上升的K波段连续体,这是从IC类型SN型中的第一个明确的灰尘检测。非LTE CO建模表明,CO仍然是光学厚的,并且CO质量的下限为0.001 MSUN。尘埃温度为810 K,灰尘质量为〜10^(-5)MSUN。我们探讨了灰尘在喷射中形成的可能性,既有的偶尔介质中的加热灰尘和红外回声。 SN2020OI的光曲线与具有规范爆炸能量,0.07 MSUN NI质量和0.7 MSUN弹出质量的Stella模型一致。 〜10^(52)ERG的高爆炸能量模型,0.4 MSUN NI质量,6.5 MSUN弹出质量,带有折叠物质,可再现SN2020BVC的双峰光曲线。我们观察到IR Ca〜II三重序的吸收特征的时间变化,S〜I在1.043微米,而在5169 Angstrom处的Fe〜II。蓝班线表示SN2020BVC的高速度高达60,000 km/s,SN202020OI的速度高达20,000 km/s,并且在光学最大值之前,膨胀速度迅速下降。我们介绍了1.4至10微米之间的CO和SIO分子条带的光谱特征和诊断。
We present near-infrared and optical observations of the Type Ic Supernova (SN) 2020oi in the galaxy M100 and the broad-lined Type Ic SN2020bvc in UGC 9379, using Gemini, LCO, SOAR, and other ground-based telescopes. The near-IR spectrum of SN2020oi at day 63 since the explosion shows strong CO emissions and a rising K-band continuum, which is the first unambiguous dust detection from a Type Ic SN. Non-LTE CO modeling shows that CO is still optically thick, and that the lower limit to the CO mass is 0.001 Msun. The dust temperature is 810 K, and the dust mass is ~10^(-5) Msun. We explore the possibilities that the dust is freshly formed in the ejecta, heated dust in the pre-existing circumstellar medium, and an infrared echo. The light curves of SN2020oi are consistent with a STELLA model with canonical explosion energy, 0.07 Msun Ni mass, and 0.7 Msun ejecta mass. A model of high explosion energy of ~10^(52) erg, 0.4 Msun Ni mass, 6.5 Msun ejecta mass with the circumstellar matter, reproduces the double-peaked light curves of SN2020bvc. We observe temporal changes of absorption features of the IR Ca~II triplet, S~I at 1.043 micron, and Fe~II at 5169 Angstrom. The blue-shifted lines indicate high velocities, up to 60,000 km/s for SN2020bvc and 20,000 km/s for SN2020oi, and the expansion velocity rapidly declines before the optical maximum. We present spectral signatures and diagnostics of CO and SiO molecular bands between 1.4 and 10 microns.