论文标题
数据传输方法以改善SEQ-to-seq逆转录合成
Data Transfer Approaches to Improve Seq-to-Seq Retrosynthesis
论文作者
论文摘要
返回合成是推断反应物化合物通过化学反应合成给定产物化合物的问题。关于返回合成的最新研究集中在提出更复杂的预测模型上,但是喂养模型的数据集在实现最佳概括模型中也起着至关重要的作用。通常,最适合特定任务的数据集往往很小。在这种情况下,它是从同一域中大型或干净的数据集传输知识的标准解决方案。在本文中,我们对端到端生成模型的数据传输方法进行了系统的深入研究,以应用于逆转录。实验结果表明,典型的数据传输方法可以改善现成的变压器基线模型的测试预测得分。尤其是,预训练和微调方法提高了基线的准确性得分,从而实现了新的最新成绩。此外,我们对错误的预测结果进行了手动检查。检查表明,在几乎所有情况下,预训练和微调模型都可以产生化学适当或明智的建议。
Retrosynthesis is a problem to infer reactant compounds to synthesize a given product compound through chemical reactions. Recent studies on retrosynthesis focus on proposing more sophisticated prediction models, but the dataset to feed the models also plays an essential role in achieving the best generalizing models. Generally, a dataset that is best suited for a specific task tends to be small. In such a case, it is the standard solution to transfer knowledge from a large or clean dataset in the same domain. In this paper, we conduct a systematic and intensive examination of data transfer approaches on end-to-end generative models, in application to retrosynthesis. Experimental results show that typical data transfer methods can improve test prediction scores of an off-the-shelf Transformer baseline model. Especially, the pre-training plus fine-tuning approach boosts the accuracy scores of the baseline, achieving the new state-of-the-art. In addition, we conduct a manual inspection for the erroneous prediction results. The inspection shows that the pre-training plus fine-tuning models can generate chemically appropriate or sensible proposals in almost all cases.