论文标题

量子随机系列扩展方法

Quantum stochastic series expansion methods

论文作者

Tan, Kok Chuan, Bowmick, Dhiman, Sengupta, Pinaki

论文摘要

提出了随机系列扩展(SSE)Monte Carlo方法的量子实现,这表明量子SSE比SSE的经典实现具有显着优势。特别是,对于经典SSE遇到标志问题的问题,实施蒙特卡洛迭代的成本仅与量子SSE中的系统大小线性缩放,而它可能会按成倍扩展,而经典SSE中的系统大小。如果可以有效地实施经典SSE,那么量子SSE仍然可以通过允许测量更一般的观察力来提供优势。

A quantum implementation of the Stochastic Series Expansion (SSE) Monte Carlo method is proposed, and it is shown that quantum SSE offers significant advantages over classical implementations of SSE. In particular, for problems where classical SSE encounters the sign problem, the cost of implementing a Monte Carlo iteration scales only linearly with system size in quantum SSE, while it may scale exponentially with system size in classical SSE. In cases where classical SSE can be efficiently implemented, quantum SSE still offers an advantage by allowing for more general observables to be measured.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源