论文标题

深度卷积神经网络基于野外的面部表达识别

Deep Convolutional Neural Network Based Facial Expression Recognition in the Wild

论文作者

Anas, Hafiq, Rehman, Bacha, Ong, Wee Hong

论文摘要

本文介绍了提出的方法,所使用的数据以及我们参与2020年情感行为行为分析的ChallengetRack 2(Expr挑战赛)的结果。在2020年竞争中。在本次竞争中,我们已经在给定的数据集中使用了拟议的深卷积神经网络(CNN)模型来执行自动面部表达识别(AFER)。我们提出的模型的准确度为50.77%,而验证集的F1得分为29.16%。

This paper describes the proposed methodology, data used and the results of our participation in the ChallengeTrack 2 (Expr Challenge Track) of the Affective Behavior Analysis in-the-wild (ABAW) Competition 2020. In this competition, we have used a proposed deep convolutional neural network (CNN) model to perform automatic facial expression recognition (AFER) on the given dataset. Our proposed model has achieved an accuracy of 50.77% and an F1 score of 29.16% on the validation set.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源