论文标题
使用深神经网络对X射线图像进行X射线图像的分类
COVID-19 Classification of X-ray Images Using Deep Neural Networks
论文作者
论文摘要
在2019年冠状病毒病(COVID-19)暴发中,胸部X射线(CXR)成像在诊断和监测COVID-19患者中起着重要作用。机器学习解决方案已被证明可用于在一系列医学环境中的X射线分析和分类。这项研究的目的是创建和评估用于诊断Covid-19的机器学习模型,并根据其X射线扫描提供一种工具来搜索类似患者。在这项回顾性研究中,使用预先训练的深度学习模型(RENET50)构建了一个分类器,并通过数据增强和肺部分段来增强,以检测2018年1月至2020年7月在2020年7月在以色列的四家医院收集的正面CXR图像中的COVID-19。基于网络结果实现了最接近的邻居算法,该结果标识了与给定图像最相似的图像。使用接收器操作特征(ROC)曲线和Precision-Recall(P-R)曲线的曲线(AUC)下的精度,灵敏度,敏感性,敏感性,敏感性(AUC)的面积进行评估。这项研究的数据集包括1384例患者(63 +/- 18岁,552名男性),包括2362个CXR,用于正值和阴性COVID-19的平衡。我们的模型达到了89.7%(314/350)的准确性,在COVID-19中的敏感性为87.1%(156/179)在测试数据集中的敏感性,其中包括原始数据的15%(350 of 2326),其ROC 0.95和P-R Curve 0.94的AUC为0.94。对于每个图像,我们都以最相似的基于DNN的图像嵌入来检索图像;这些可用于与以前的情况进行比较。
In the midst of the coronavirus disease 2019 (COVID-19) outbreak, chest X-ray (CXR) imaging is playing an important role in the diagnosis and monitoring of patients with COVID-19. Machine learning solutions have been shown to be useful for X-ray analysis and classification in a range of medical contexts. The purpose of this study is to create and evaluate a machine learning model for diagnosis of COVID-19, and to provide a tool for searching for similar patients according to their X-ray scans. In this retrospective study, a classifier was built using a pre-trained deep learning model (ReNet50) and enhanced by data augmentation and lung segmentation to detect COVID-19 in frontal CXR images collected between January 2018 and July 2020 in four hospitals in Israel. A nearest-neighbors algorithm was implemented based on the network results that identifies the images most similar to a given image. The model was evaluated using accuracy, sensitivity, area under the curve (AUC) of receiver operating characteristic (ROC) curve and of the precision-recall (P-R) curve. The dataset sourced for this study includes 2362 CXRs, balanced for positive and negative COVID-19, from 1384 patients (63 +/- 18 years, 552 men). Our model achieved 89.7% (314/350) accuracy and 87.1% (156/179) sensitivity in classification of COVID-19 on a test dataset comprising 15% (350 of 2326) of the original data, with AUC of ROC 0.95 and AUC of the P-R curve 0.94. For each image we retrieve images with the most similar DNN-based image embeddings; these can be used to compare with previous cases.