论文标题
GraphDialog:将图形知识集成到端到端的面向任务的对话系统
GraphDialog: Integrating Graph Knowledge into End-to-End Task-Oriented Dialogue Systems
论文作者
论文摘要
端到端以任务为导向的对话系统旨在直接从纯文本输入中生成系统响应。这种系统面临两个挑战:一个是如何有效地将外部知识库(KB)纳入学习框架的方法;另一个是如何准确捕获对话历史的语义。在本文中,我们通过在知识库中和对话的依赖性解析树中利用图形结构信息来解决这两个挑战。为了有效利用对话历史中的结构信息,我们提出了一种新的经过重复的单元架构,该架构允许在图上进行表示。为了利用KBS中实体之间的关系,该模型根据图结构结合了多跳的推理能力。实验结果表明,所提出的模型可以在两个不同的面向任务的对话数据集上对最先进模型的一致改进。
End-to-end task-oriented dialogue systems aim to generate system responses directly from plain text inputs. There are two challenges for such systems: one is how to effectively incorporate external knowledge bases (KBs) into the learning framework; the other is how to accurately capture the semantics of dialogue history. In this paper, we address these two challenges by exploiting the graph structural information in the knowledge base and in the dependency parsing tree of the dialogue. To effectively leverage the structural information in dialogue history, we propose a new recurrent cell architecture which allows representation learning on graphs. To exploit the relations between entities in KBs, the model combines multi-hop reasoning ability based on the graph structure. Experimental results show that the proposed model achieves consistent improvement over state-of-the-art models on two different task-oriented dialogue datasets.