论文标题

句子组成感知的方面类别情感分析与图形注意力网络

Sentence Constituent-Aware Aspect-Category Sentiment Analysis with Graph Attention Networks

论文作者

Li, Yuncong, Yin, Cunxiang, Zhong, Sheng-hua

论文摘要

方面类别情感分析(ACSA)旨在预测句子中讨论的方面类别的情感极性。由于句子通常讨论一个或多个方面类别并对它们表达不同的情感,因此已经开发出各种基于注意力的方法来为给定方面类别分配适当的情感词并获得有希望的结果。但是,这些方法中的大多数直接使用给定的方面类别来找到与方面类别相关的情感单词,这可能会导致情感单词与方面类别之间的不匹配,而无关的情感词对给定方面的类别具有语义意义。为了减轻此问题,我们提出了一个句子成分感知的网络(扫描),以进行方面类别情感分析。扫描包含两个图形注意模块和一个交互式损耗函数。图形注意模块分别为方面类别检测(ACD)任务和ACSA任务生成节点的表示。 ACD旨在检测句子中讨论的方面类别,这是一项辅助任务。对于给定的方面类别,交互式损耗函数有助于ACD任务找到可以预测方面类别但无法预测其他方面类别的节点。然后,节点中的情感词用于通过ACSA任务来预测方面类别的情感极性。五个公共数据集的实验结果证明了扫描的有效性。

Aspect category sentiment analysis (ACSA) aims to predict the sentiment polarities of the aspect categories discussed in sentences. Since a sentence usually discusses one or more aspect categories and expresses different sentiments toward them, various attention-based methods have been developed to allocate the appropriate sentiment words for the given aspect category and obtain promising results. However, most of these methods directly use the given aspect category to find the aspect category-related sentiment words, which may cause mismatching between the sentiment words and the aspect categories when an unrelated sentiment word is semantically meaningful for the given aspect category. To mitigate this problem, we propose a Sentence Constituent-Aware Network (SCAN) for aspect-category sentiment analysis. SCAN contains two graph attention modules and an interactive loss function. The graph attention modules generate representations of the nodes in sentence constituency parse trees for the aspect category detection (ACD) task and the ACSA task, respectively. ACD aims to detect aspect categories discussed in sentences and is a auxiliary task. For a given aspect category, the interactive loss function helps the ACD task to find the nodes which can predict the aspect category but can't predict other aspect categories. The sentiment words in the nodes then are used to predict the sentiment polarity of the aspect category by the ACSA task. The experimental results on five public datasets demonstrate the effectiveness of SCAN.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源