论文标题
联合分位时间序列分析中的贝叶斯特征选择
Bayesian Feature Selection in Joint Quantile Time Series Analysis
论文作者
论文摘要
相关的多元时间序列数据的分位数特征选择一直是方法论上的挑战,并且是一个开放的问题。在本文中,我们提出了一种以高维关节分位数时间序列分析为特征选择的一般贝叶斯尺寸减小方法,以分数特征选择时间序列(QFSTS)模型的名称。 QFSTS模型是一个通用的结构时间序列模型,每个组件都会通过直接解释对时间序列建模产生添加贡献。它的灵活性是用户可以为每个时间序列添加/扣除组件的意义上的复合性,并且每个时间序列都可以具有自己的特定尺寸的特定有价值的组件。特征选择是在分位数回归组件中进行的,其中每个时间序列都有自己的同时外部预测变量池允许现象。将特征选择扩展到分位数时间序列研究区域中的贝叶斯方法是使用多元不对称拉式分布,尖峰和slab先验设置,大都会 - 悬挂式算法和平均贝叶斯模型平均技术开发的。 QFSTS模型需要小型数据集来快速训练和收敛。广泛的考试证实,QFSTS模型在特征选择,参数估计和预测方面具有出色的性能。
Quantile feature selection over correlated multivariate time series data has always been a methodological challenge and is an open problem. In this paper, we propose a general Bayesian dimension reduction methodology for feature selection in high-dimensional joint quantile time series analysis, under the name of the quantile feature selection time series (QFSTS) model. The QFSTS model is a general structural time series model, where each component yields an additive contribution to the time series modeling with direct interpretations. Its flexibility is compound in the sense that users can add/deduct components for each time series and each time series can have its own specific valued components of different sizes. Feature selection is conducted in the quantile regression component, where each time series has its own pool of contemporaneous external predictors allowing nowcasting. Bayesian methodology in extending feature selection to the quantile time series research area is developed using multivariate asymmetric Laplace distribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the Bayesian model averaging technique, all implemented consistently in the Bayesian paradigm. The QFSTS model requires small datasets to train and converges fast. Extensive examinations confirmed that the QFSTS model has superior performance in feature selection, parameter estimation, and forecast.