论文标题

关于旋转对$ 3D $ Inviscid原始方程的分析解决方案寿命的影响

On the effect of rotation on the life-span of analytic solutions to the $3D$ inviscid primitive equations

论文作者

Ghoul, Tej-Eddine, Ibrahim, Slim, Lin, Quyuan, Titi, Edriss S.

论文摘要

我们研究了旋转对溶液的寿命对$ 3D $静液压欧拉方程的影响,并在圆环上旋转和无粘性原始方程(PES)。分析功能的空间似乎是研究具有一般初始数据的无粘性PE的初始值问题的自然空间,因为它们最近已显示出它们表现出Kelvin-Helmholtz型不稳定性。首先,在短时间间隔内,与旋转率$ |ω| $无关,我们在分析函数的空间中建立了无粘性PE的局部良好性。此外,由于对压缩和斜视模式分解的精细分析,我们为长期存在的溶液建立了两个结果。 (i)独立于$ |ω| $,我们证明了解决方案的寿命趋于无穷大,因为初始斜压模式的分析规范为零。此外,在这种情况下,我们表明,$ 3D $ Inviscid PES的解决方案收敛到限制系统的解决方案,该解决方案由$ 2D $ EULER方程管辖。 (ii)我们证明,解决方案的寿命可以用$ |ω| \ rightarrow \ infty $延长,这是本文的主要结果。这是针对“准备充分的”初始数据建立的,即,仅当Baroclinic模式的Sobolev Narm(但不是分析规范)就足够小时,取决于$ |ω| $。此外,对于大$ |ω| $和“准备充分的”初始数据,我们表明,解决方案的解决方案近似于使用相同初始数据的简单限制共振系统。

We study the effect of the rotation on the life-span of solutions to the $3D$ hydrostatic Euler equations with rotation and the inviscid Primitive equations (PEs) on the torus. The space of analytic functions appears to be the natural space to study the initial value problem for the inviscid PEs with general initial data, as they have been recently shown to exhibit Kelvin-Helmholtz type instability. First, for a short interval of time that is independent of the rate of rotation $|Ω|$, we establish the local well-posedness of the inviscid PEs in the space of analytic functions. In addition, thanks to a fine analysis of the barotropic and baroclinic modes decomposition, we establish two results about the long time existence of solutions. (i) Independently of $|Ω|$, we show that the life-span of the solution tends to infinity as the analytic norm of the initial baroclinic mode goes to zero. Moreover, we show in this case that the solution of the $3D$ inviscid PEs converges to the solution of the limit system, which is governed by the $2D$ Euler equations. (ii) We show that the life-span of the solution can be prolonged unboundedly with $|Ω|\rightarrow \infty$, which is the main result of this paper. This is established for "well-prepared" initial data, namely, when only the Sobolev norm (but not the analytic norm) of the baroclinic mode is small enough, depending on $|Ω|$. Furthermore, for large $|Ω|$ and "well-prepared" initial data, we show that the solution to the $3D$ inviscid PEs is approximated by the solution to a simple limit resonant system with the same initial data.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源