论文标题
我们可以概括和分发私人表示学习吗?
Can we Generalize and Distribute Private Representation Learning?
论文作者
论文摘要
我们研究了私人但信息丰富的学习表征的问题,即提供有关预期的“盟友”目标的信息,同时隐藏敏感的“对手”属性。我们提出了排除 - 包含生成对抗网络(EIGAN),这是一种广义的私人表示学习(PRL)体系结构,该体系结构与现有的PRL解决方案不同。尽管集中聚集的数据集是大多数PRL技术的先决条件,但由于隐私问题,实际上在多个不愿共享原始数据的分布式节点上,现实世界中的数据通常会孤立。我们通过开发D-Eigan(第一个分布式PRL方法)来解决这一实用约束,该方法在不传输源数据的情况下在每个节点上学习表示形式。我们从理论上分析了最佳特征和D-Eigan编码器下的对手的行为,以及盟友和对手任务对优化目标的依赖性的影响。我们在各种数据集上进行的实验证明了在性能,鲁棒性和可扩展性方面,EIGAN的优势。特别是,Eigan的表现优于先前的最先进的准确性余量(提高47%),而在不同的网络设置下,D-Eigan的性能始终与EIGAN相当。
We study the problem of learning representations that are private yet informative, i.e., provide information about intended "ally" targets while hiding sensitive "adversary" attributes. We propose Exclusion-Inclusion Generative Adversarial Network (EIGAN), a generalized private representation learning (PRL) architecture that accounts for multiple ally and adversary attributes unlike existing PRL solutions. While centrally-aggregated dataset is a prerequisite for most PRL techniques, data in real-world is often siloed across multiple distributed nodes unwilling to share the raw data because of privacy concerns. We address this practical constraint by developing D-EIGAN, the first distributed PRL method that learns representations at each node without transmitting the source data. We theoretically analyze the behavior of adversaries under the optimal EIGAN and D-EIGAN encoders and the impact of dependencies among ally and adversary tasks on the optimization objective. Our experiments on various datasets demonstrate the advantages of EIGAN in terms of performance, robustness, and scalability. In particular, EIGAN outperforms the previous state-of-the-art by a significant accuracy margin (47% improvement), and D-EIGAN's performance is consistently on par with EIGAN under different network settings.