论文标题
外部绘画内部绘画:边缘引导图像通过双向重排和进行渐进的步骤学习
Painting Outside as Inside: Edge Guided Image Outpainting via Bidirectional Rearrangement with Progressive Step Learning
论文作者
论文摘要
图像支出是一个非常有趣的问题,因为可以将给定图像的外部视为图像的上下文。这项任务有两个主要挑战。首先是在生成区域的内容和原始输入中保持空间一致性。第二个是生成具有少量相邻信息的高质量大图像。传统的图像支出方法会产生不一致,模糊和重复的像素。为了减轻出门问题的困难,我们建议使用双向边界区域重排的新图像支出方法。我们通过反映更多的方向信息来重新排列图像以从图像介绍任务中受益。双向边界区域重排可以使用类似于图像插入任务的双向信息来生成丢失区域的生成,从而比使用单向信息的常规方法生成更高的质量。此外,我们使用的边缘映射发生器将图像视为具有结构信息的原始输入,并使未知区域的边缘幻觉以生成图像。将我们提出的方法与其他最先进的支出和介绍方法进行了比较。我们使用Brisque(不引用图像质量评估(IQA)指标之一Brisque)进行了比较并评估它们,以评估产出的自然性。实验结果表明,我们的方法优于其他方法,并生成具有360°全景特征的新图像。
Image outpainting is a very intriguing problem as the outside of a given image can be continuously filled by considering as the context of the image. This task has two main challenges. The first is to maintain the spatial consistency in contents of generated regions and the original input. The second is to generate a high-quality large image with a small amount of adjacent information. Conventional image outpainting methods generate inconsistent, blurry, and repeated pixels. To alleviate the difficulty of an outpainting problem, we propose a novel image outpainting method using bidirectional boundary region rearrangement. We rearrange the image to benefit from the image inpainting task by reflecting more directional information. The bidirectional boundary region rearrangement enables the generation of the missing region using bidirectional information similar to that of the image inpainting task, thereby generating the higher quality than the conventional methods using unidirectional information. Moreover, we use the edge map generator that considers images as original input with structural information and hallucinates the edges of unknown regions to generate the image. Our proposed method is compared with other state-of-the-art outpainting and inpainting methods both qualitatively and quantitatively. We further compared and evaluated them using BRISQUE, one of the No-Reference image quality assessment (IQA) metrics, to evaluate the naturalness of the output. The experimental results demonstrate that our method outperforms other methods and generates new images with 360°panoramic characteristics.