论文标题
数据驱动的解析分析
Data-driven resolvent analysis
论文作者
论文摘要
Resolvent Analysis可以根据其管理方程来确定动态系统中最响应的强迫和最容易接受的状态。该方法的兴趣在过去十年中持续增长,因为它有可能在湍流中揭示结构,引导传感器/执行器放置以及流量控制应用。但是,分解分析需要访问高保真数值求解器才能产生线性化的动力学运算符。在这项工作中,我们开发了一种纯粹的数据驱动算法来执行分解分析以获得领先的强迫和响应模式,而无需求助于管理方程,而是基于线性稳定流的瞬时演化的快照。我们方法的表述遵循两个既定事实:$ 1)$动态模式分解可以近似于管理操作员的特征值和特征向量,该操作员管理系统从测量数据中演变的进化,$ 2)$ $ 2)$ a的投影将分辨率运算符的投影投影到该知识的eigendostions a Breed eigendostions a Beed。我们演示了线性化复杂的银堡 - landau方程和三维过渡通道流的数值数据的方法,并讨论数据要求。以完全无方程式和无伴随的方式执行解决方案分析的能力将在降低分解研究和应用的进入障碍中发挥重要作用。
Resolvent analysis identifies the most responsive forcings and most receptive states of a dynamical system, in an input--output sense, based on its governing equations. Interest in the method has continued to grow during the past decade due to its potential to reveal structures in turbulent flows, to guide sensor/actuator placement, and for flow control applications. However, resolvent analysis requires access to high-fidelity numerical solvers to produce the linearized dynamics operator. In this work, we develop a purely data-driven algorithm to perform resolvent analysis to obtain the leading forcing and response modes, without recourse to the governing equations, but instead based on snapshots of the transient evolution of linearly stable flows. The formulation of our method follows from two established facts: $1)$ dynamic mode decomposition can approximate eigenvalues and eigenvectors of the underlying operator governing the evolution of a system from measurement data, and $2)$ a projection of the resolvent operator onto an invariant subspace can be built from this learned eigendecomposition. We demonstrate the method on numerical data of the linearized complex Ginzburg--Landau equation and of three-dimensional transitional channel flow, and discuss data requirements. The ability to perform resolvent analysis in a completely equation-free and adjoint-free manner will play a significant role in lowering the barrier of entry to resolvent research and applications.