论文标题

通过实例分段和深度估计来产生视差运动效应

Parallax Motion Effect Generation Through Instance Segmentation And Depth Estimation

论文作者

Pinto, Allan, Córdova, Manuel A., Decker, Luis G. L., Flores-Campana, Jose L., Souza, Marcos R., Santos, Andreza A. dos, Conceição, Jhonatas S., Gagliardi, Henrique F., Luvizon, Diogo C., Torres, Ricardo da S., Pedrini, Helio

论文摘要

由于无数的机会和应用,这项技术为现代解决方案(例如虚拟和增强现实应用程序)提供了无数的机会和应用,因此立体声愿景是计算机视觉中越来越多的话题。为了增强用户在三维虚拟环境中的体验,运动视差估算是实现这一目标的有前途的技术。在本文中,我们提出了一种算法,以利用最新的实例分割和深度估计方法来从单个图像中产生视差运动效应。这项工作还与此类算法进行了比较,以研究一种能够立即估算实例细分和深度估计的多任务学习网络,以研究视差运动效应效率和质量之间的权衡。实验结果和视觉质量评估表明,PYD网络(深度估计)与蒙版R-CNN或FBNET网络(实例分割)结合使用,可以产生具有良好视觉质量的视差运动效应。

Stereo vision is a growing topic in computer vision due to the innumerable opportunities and applications this technology offers for the development of modern solutions, such as virtual and augmented reality applications. To enhance the user's experience in three-dimensional virtual environments, the motion parallax estimation is a promising technique to achieve this objective. In this paper, we propose an algorithm for generating parallax motion effects from a single image, taking advantage of state-of-the-art instance segmentation and depth estimation approaches. This work also presents a comparison against such algorithms to investigate the trade-off between efficiency and quality of the parallax motion effects, taking into consideration a multi-task learning network capable of estimating instance segmentation and depth estimation at once. Experimental results and visual quality assessment indicate that the PyD-Net network (depth estimation) combined with Mask R-CNN or FBNet networks (instance segmentation) can produce parallax motion effects with good visual quality.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源