论文标题

使用图像序列分类的超声引导放射疗法的辅助探针定位

Assisted Probe Positioning for Ultrasound Guided Radiotherapy Using Image Sequence Classification

论文作者

Grimwood, Alexander, McNair, Helen, Hu, Yipeng, Bonmati, Ester, Barratt, Dean, Harris, Emma

论文摘要

前列腺外束放射疗法中有效的经透明超声图像指导需要在患者设置过程中每个疗程在探针和前列腺之间保持一致的比对。探针放置和超声图像间隔是手动任务,包括操作员技能,导致互操作不确定性降低了放射疗法精度。我们演示了一种通过图像和探针位置数据的联合分类来确保精确探测位置的方法。使用多输入的多任务算法,将来自光学跟踪的超声探针的空间坐标数据与图像CLAS-Sifier结合使用,使用复发性神经网络实时生成两组预测。第一组使用类别在视野中可见相关的前列腺解剖结构:外前列腺,前列腺外围,前列腺中心。第二组建议进行探针角度调整,以与探针和前列腺中心之间的对齐方式进行对齐:左移动,向右移动,停止。对32例患者的61次治疗课程进行了9,743次临床图像的训练和测试。我们评估了从2/3和3/3一致性阈值中从三位经验丰富的观察者那里脱颖而出的类标签的分类精度。对于观察者之间一致共识的图像,解剖学分类精度为97.2%,探针调整精度为94.9%。该算法在平均值(标准偏差)范围内识别出最佳的探针对齐,3.7 $^{\ CRICC} $(1.2 $^{\ CRICK} $)从具有完全观察者共识的角度标签中,可与2.8 $^{\ circ} $(2.6 $^{\ circ} $)均衡。我们建议通过在患者设置期间提供有效的实时反馈,可以通过有限的超声图像解释经验来帮助RA-Diotherapy从业者具有有限的超声图像。

Effective transperineal ultrasound image guidance in prostate external beam radiotherapy requires consistent alignment between probe and prostate at each session during patient set-up. Probe placement and ultrasound image inter-pretation are manual tasks contingent upon operator skill, leading to interoperator uncertainties that degrade radiotherapy precision. We demonstrate a method for ensuring accurate probe placement through joint classification of images and probe position data. Using a multi-input multi-task algorithm, spatial coordinate data from an optically tracked ultrasound probe is combined with an image clas-sifier using a recurrent neural network to generate two sets of predictions in real-time. The first set identifies relevant prostate anatomy visible in the field of view using the classes: outside prostate, prostate periphery, prostate centre. The second set recommends a probe angular adjustment to achieve alignment between the probe and prostate centre with the classes: move left, move right, stop. The algo-rithm was trained and tested on 9,743 clinical images from 61 treatment sessions across 32 patients. We evaluated classification accuracy against class labels de-rived from three experienced observers at 2/3 and 3/3 agreement thresholds. For images with unanimous consensus between observers, anatomical classification accuracy was 97.2% and probe adjustment accuracy was 94.9%. The algorithm identified optimal probe alignment within a mean (standard deviation) range of 3.7$^{\circ}$ (1.2$^{\circ}$) from angle labels with full observer consensus, comparable to the 2.8$^{\circ}$ (2.6$^{\circ}$) mean interobserver range. We propose such an algorithm could assist ra-diotherapy practitioners with limited experience of ultrasound image interpreta-tion by providing effective real-time feedback during patient set-up.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源