论文标题

病理图像的计算分析可解释的微卫星不稳定性预测

Computational analysis of pathological image enables interpretable prediction for microsatellite instability

论文作者

Zhu, Jin, Wu, Wangwei, Zhang, Yuting, Lin, Shiyun, Jiang, Yukang, Liu, Ruixian, Wang, Xueqin

论文摘要

微卫星不稳定性(MSI)与几种肿瘤类型相关,其状态对于指导患者治疗决策变得越来越重要。但是,在临床实践中,将MSI与对应物区分开是具有挑战性的,因为MSI的诊断需要额外的遗传或免疫组织化学检测。在这项研究中,建立了可解释的病理图像分析策略,以帮助医学专家自动识别MSI。这些策略只需要普遍存在的血久毒素和曙红染色的全裂片图像,并且可以在从癌症基因组地图集收集的三个同类中实现不错的性能。这些策略在两个方面提供了解释性。一方面,图像级别的可解释性是通过基于深度学习网络的重要区域的定位热图来实现的;另一方面,通过特征重要性和病理特征相互作用分析来实现特征级别的可解释性。更有趣的是,从图像级和特征级别的可解释性中,颜色特征和纹理特征都显示出对MSI预测的最大贡献。因此,提出的策略下的分类模型不仅可以作为预测患者MSI状态的有效工具,而且还可以为具有临床理解的病理学家提供更多的见解。

Microsatellite instability (MSI) is associated with several tumor types and its status has become increasingly vital in guiding patient treatment decisions. However, in clinical practice, distinguishing MSI from its counterpart is challenging since the diagnosis of MSI requires additional genetic or immunohistochemical tests. In this study, interpretable pathological image analysis strategies are established to help medical experts to automatically identify MSI. The strategies only require ubiquitous Haematoxylin and eosin-stained whole-slide images and can achieve decent performance in the three cohorts collected from The Cancer Genome Atlas. The strategies provide interpretability in two aspects. On the one hand, the image-level interpretability is achieved by generating localization heat maps of important regions based on the deep learning network; on the other hand, the feature-level interpretability is attained through feature importance and pathological feature interaction analysis. More interestingly, both from the image-level and feature-level interpretability, color features and texture characteristics are shown to contribute the most to the MSI predictions. Therefore, the classification models under the proposed strategies can not only serve as an efficient tool for predicting the MSI status of patients, but also provide more insights to pathologists with clinical understanding.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源