论文标题

野外网络感知的建议:方法论,现实评估,实验

Network-aware Recommendations in the Wild: Methodology, Realistic Evaluations, Experiments

论文作者

Kastanakis, Savvas, Sermpezis, Pavlos, Kotronis, Vasileios, Menasché, Daniel, Spyropoulos, Thrasyvoulos

论文摘要

最近已提出联合缓存和建议作为提高移动边缘缓存效率的新范式。早期发现证明了网络性能的显着增长。但是,以前的工作仅在模拟环境上评估了所提出的方案。因此,仍然不确定所要求的福利是否会在实际环境中发生变化。在本文中,我们提出了一种方法,该方法仅通过使用公开信息来评估实际内容服务中的联合网络和建议方案。我们将方法应用于YouTube服务,并进行广泛的测量以研究潜在的性能增长。我们的结果表明,实践中可以取得巨大的收益。例如,从缓存感知建议提出的高速率命中率增加了8至10倍。最后,我们与真实用户建立了实验性测试床并进行实验。我们提供代码和数据集,以促进进一步的研究。据我们所知,这是联合缓存和建议范式的第一个现实评估(对真实的服务,进行真实的测量和用户实验)。我们的发现提供了实验证据,证明了这种范式的可行性和好处,验证了先前作品的假设,并提供了可以推动未来研究的见解。

Joint caching and recommendation has been recently proposed as a new paradigm for increasing the efficiency of mobile edge caching. Early findings demonstrate significant gains for the network performance. However, previous works evaluated the proposed schemes exclusively on simulation environments. Hence, it still remains uncertain whether the claimed benefits would change in real settings. In this paper, we propose a methodology that enables to evaluate joint network and recommendation schemes in real content services by only using publicly available information. We apply our methodology to the YouTube service, and conduct extensive measurements to investigate the potential performance gains. Our results show that significant gains can be achieved in practice; e.g., 8 to 10 times increase in the cache hit ratio from cache-aware recommendations. Finally, we build an experimental testbed and conduct experiments with real users; we make available our code and datasets to facilitate further research. To our best knowledge, this is the first realistic evaluation (over a real service, with real measurements and user experiments) of the joint caching and recommendations paradigm. Our findings provide experimental evidence for the feasibility and benefits of this paradigm, validate assumptions of previous works, and provide insights that can drive future research.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源