论文标题
爆破动力学,用于平滑有限的能量径向数据解决方案,用于自动偶联的Chern-simons-Schrödinger方程
Blow-up dynamics for smooth finite energy radial data solutions to the self-dual Chern-Simons-Schrödinger equation
论文作者
论文摘要
我们考虑自我双重划分的Chern-simons-Schrödinger(CSS)方程(也称为Jackiw-Pi型号)的有限时间爆破动力学,附近是radial soliton $ q $,其中最少$ l^{2} $ - NORM- NORM- NORM(地面状态)。虽然假符号对称性对$ q $的正式应用产生了$ l^{2} $ - 在有限时间内解决方案爆炸的初始数据集的连续曲线,但由于$ q $的缓慢空间衰减,它们都具有无限的能量。在本文中,我们展示了$ Q $的平滑有限能量径向扰动的初始数据集,其解决方案在有限的时间内爆炸。有趣的是,它们的爆炸率与对数的幂率不同。相反地应用假符号对称性,这也产生了无限时间爆破解决方案的第一个示例,其爆炸曲线以对数速率合同。 我们的分析基于(CSS)[21,22]的前两个作者的先前作品的思想,以及Merle,Raphaël和Rodnianski的著名作品[33,38]。本文的一个值得注意的特征是在参数的所有部分中,协变量的Cauchy-Riemann运营商对非线性协变量的结合进行了系统使用。这不仅克服了问题的非局部性,这是(CSS)的主要挑战,而且简化了证明中出现的非线性结构。
We consider the finite-time blow-up dynamics of solutions to the self-dual Chern-Simons-Schrödinger (CSS) equation (also referred to as the Jackiw-Pi model) near the radial soliton $Q$ with the least $L^{2}$-norm (ground state). While a formal application of pseudoconformal symmetry to $Q$ gives rise to an $L^{2}$-continuous curve of initial data sets whose solutions blow up in finite time, they all have infinite energy due to the slow spatial decay of $Q$. In this paper, we exhibit initial data sets that are smooth finite energy radial perturbations of $Q$, whose solutions blow up in finite time. Interestingly, their blow-up rate differs from the pseudoconformal rate by a power of logarithm. Applying pseudoconformal symmetry in reverse, this also yields a first example of an infinite-time blow-up solution, whose blow-up profile contracts at a logarithmic rate. Our analysis builds upon the ideas of previous works of the first two authors on (CSS) [21,22], as well as the celebrated works on energy-critical geometric equations by Merle, Raphaël, and Rodnianski [33,38]. A notable feature of this paper is a systematic use of nonlinear covariant conjugations by the covariant Cauchy-Riemann operators in all parts of the argument. This not only overcomes the nonlocality of the problem, which is the principal challenge for (CSS), but also simplifies the structure of nonlinearity arising in the proof.