论文标题

使用暂时平滑的贝叶斯稀疏回归模型估算195个国家的死产率

Estimating the Stillbirth Rate for 195 Countries Using A Bayesian Sparse Regression Model with Temporal Smoothing

论文作者

Wang, Zhengfan, Fix, Miranda J., Hug, Lucia, Mishra, Anu, You, Danzhen, Blencowe, Hannah, Wakefield, Jon, Alkema, Leontine

论文摘要

全球死产率的估计很复杂,因为来自大多数死产的国家的可靠数据很少。我们收集了数据并开发了一个贝叶斯等级时间稀疏回归模型,用于估算2000年至2019年所有国家的死胎率。该模型将协变量与时间平滑过程相结合,因此估计在国家 - 期限中与国家 - 质量数据驱动的数据驱动,并由COAVARIADES与CONADER-COVARIATES一起用于限制性或无限制数据。马蹄铁用于鼓励稀疏。该模型通过替代的死胎定义调整观察结果,并说明遭受非抽样错误的观察结果的偏差。样本中的拟合优度和样本外验证结果表明该模型经过了合理的校准。联合国机构间小组用于儿童死亡率估算,用于监测所有国家的死产率。

Estimation of stillbirth rates globally is complicated because of the paucity of reliable data from countries where most stillbirths occur. We compiled data and developed a Bayesian hierarchical temporal sparse regression model for estimating stillbirth rates for all countries from 2000 to 2019. The model combines covariates with a temporal smoothing process so that estimates are data-driven in country-periods with high-quality data and deter-mined by covariates for country-periods with limited or no data. Horseshoepriors are used to encourage sparseness. The model adjusts observations with alternative stillbirth definitions and accounts for bias in observations that are subject to non-sampling errors. In-sample goodness of fit and out-of-sample validation results suggest that the model is reasonably well calibrated. The model is used by the UN Inter-agency Group for Child Mortality Estimation to monitor the stillbirth rate for all countries.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源