论文标题

使用张量网络的生成机器学习:近期量子计算机上的基准测试

Generative machine learning with tensor networks: benchmarks on near-term quantum computers

论文作者

Wall, Michael L., Abernathy, Matthew R., Quiroz, Gregory

论文摘要

在过去的几年中,嘈杂的中间量子量子(NISQ)计算设备已成为一种工业现实,这些设备的基于云的界面正在实现对一系列问题的近期量子计算的探索。由于NISQ设备对于具有已知量子优势的许多算法而言太嘈杂了,因此在近期设备上发现有影响力的应用是强烈的研究兴趣的主题。我们通过Tensor Networks(TNS)的角度探索NISQ设备上量子辅助机器学习(QAML),该视角为设计用于量子设备上的资源有效和表达的机器学习模型提供了强大的平台。特别是,我们制定了一个框架,用于使用经典技术设计和优化基于TN的QAML模型,然后编译这些模型以在量子硬件上运行,并进行了生成矩阵产品状态(MPS)模型的演示。我们为MPS模型提出了一种广义的规范形式,该形式有助于汇编量子设备,并通过给定的拓扑和门集证明了贪婪的启发式方法,以通过某些情况下的顺序,以给定的拓扑和门设置来超过纠缠大门的数量,例如CNOTS,例如CNOTS。我们提出了一个确切的可解决基准问题,用于评估MPS QAML模型的性能,并为规范MNIST手写数字数据集提供了应用程序。通过分析原始实验计数和推断分布的统计差异,探索了硬件拓扑和日常实验噪声波动对模型性能的影响。我们还提出了使用硬件模拟器对模型性能影响的去极化和读数噪声影响的参数研究。

Noisy, intermediate-scale quantum (NISQ) computing devices have become an industrial reality in the last few years, and cloud-based interfaces to these devices are enabling exploration of near-term quantum computing on a range of problems. As NISQ devices are too noisy for many of the algorithms with a known quantum advantage, discovering impactful applications for near-term devices is the subject of intense research interest. We explore quantum-assisted machine learning (QAML) on NISQ devices through the perspective of tensor networks (TNs), which offer a robust platform for designing resource-efficient and expressive machine learning models to be dispatched on quantum devices. In particular, we lay out a framework for designing and optimizing TN-based QAML models using classical techniques, and then compiling these models to be run on quantum hardware, with demonstrations for generative matrix product state (MPS) models. We put forth a generalized canonical form for MPS models that aids in compilation to quantum devices, and demonstrate greedy heuristics for compiling with a given topology and gate set that outperforms known generic methods in terms of the number of entangling gates, e.g., CNOTs, in some cases by an order of magnitude. We present an exactly solvable benchmark problem for assessing the performance of MPS QAML models, and also present an application for the canonical MNIST handwritten digit dataset. The impacts of hardware topology and day-to-day experimental noise fluctuations on model performance are explored by analyzing both raw experimental counts and statistical divergences of inferred distributions. We also present parametric studies of depolarization and readout noise impacts on model performance using hardware simulators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源