论文标题
使用Chebyshev距离使用最小PSL设计序列及其用于混乱的MIMO雷达波形设计
Designing Sequence with Minimum PSL Using Chebyshev Distance and its Application for Chaotic MIMO Radar Waveform Design
论文作者
论文摘要
在高分辨率多重输出(MIMO)雷达的高分辨率应用中,控制峰侧室水平(PSL)非常重要。在本文中,研究了具有良好自相关属性的序列。自相关的PSL被认为是主要优点,并通过新引入的循环算法进行了优化。 PSL最小化二次方法(PMQA),PSL最小化算法,最小的矩形(PMAR)和PSL优化循环算法(POCA)。据揭示,与传统的综合侧室水平(ISL)最小化相比,最小化PSL的侧唇(ISL)最小化时,可以最大程度地减少PSL的序列。为了提高这些算法的性能,使用快速传递的奇异值分解(SVD)。为了实现MIMO雷达的波形设计,该算法应用于从修改的Bernoulli混沌系统中产生的波形。数值实验证实了与单静态和MIMO雷达中的高性能算法相比,新开发的算法的优势。
Controlling peak side-lobe level (PSL) is of great importance in high-resolution applications of multiple-input multiple-output (MIMO) radars. In this paper, designing sequences with good autocorrelation properties are studied. The PSL of the autocorrelation is regarded as the main merit and is optimized through newly introduced cyclic algorithms, namely; PSL Minimization Quadratic Approach (PMQA), PSL Minimization Algorithm, the smallest Rectangular (PMAR), and PSL Optimization Cyclic Algorithm (POCA). It is revealed that minimizing PSL results in better sequences in terms of autocorrelation side-lobes when compared with traditional integrated side-lobe level (ISL) minimization. In order to improve the performance of these algorithms, fast-randomized Singular Value Decomposition (SVD) is utilized. To achieve waveform design for MIMO radars, this algorithm is applied to the waveform generated from a modified Bernoulli chaotic system. The numerical experiments confirm the superiority of the newly developed algorithms compared to high-performance algorithms in mono-static and MIMO radars.