论文标题

在二阶交互代理系统中推断相互作用内核的学习理论

Learning Theory for Inferring Interaction Kernels in Second-Order Interacting Agent Systems

论文作者

Miller, Jason, Tang, Sui, Zhong, Ming, Maggioni, Mauro

论文摘要

建模颗粒或代理系统的复杂相互作用是一个基本的科学和数学问题,在各种领域进行了研究,从物理和生物学到经济学和机器学习。在这项工作中,我们描述了一个非常通用的二阶,异质,多变量的,相互作用的代理模型,与环境涵盖了各种各样的已知系统。我们描述了一种使用非参数回归和基于近似理论的技术的推理框架来有效地得出驱动这些动力学系统的相互作用内核的估计器。我们开发了一个完整的学习理论,该理论建立了估计器的强大一致性和最佳的非参数最大收敛速率,并证明是准确的预测轨迹。估计器利用方程式的结构来克服维数的诅咒,我们描述了对反问题的基本强制性条件,该条件确保可以学习内核并与学习矩阵的最小奇异价值有关。提出的用于构建估计量的数值算法是可行的,在高维问题上表现良好,并且在复杂的动态系统上得到了证明。

Modeling the complex interactions of systems of particles or agents is a fundamental scientific and mathematical problem that is studied in diverse fields, ranging from physics and biology, to economics and machine learning. In this work, we describe a very general second-order, heterogeneous, multivariable, interacting agent model, with an environment, that encompasses a wide variety of known systems. We describe an inference framework that uses nonparametric regression and approximation theory based techniques to efficiently derive estimators of the interaction kernels which drive these dynamical systems. We develop a complete learning theory which establishes strong consistency and optimal nonparametric min-max rates of convergence for the estimators, as well as provably accurate predicted trajectories. The estimators exploit the structure of the equations in order to overcome the curse of dimensionality and we describe a fundamental coercivity condition on the inverse problem which ensures that the kernels can be learned and relates to the minimal singular value of the learning matrix. The numerical algorithm presented to build the estimators is parallelizable, performs well on high-dimensional problems, and is demonstrated on complex dynamical systems.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源