论文标题

有限组的某些地图的可溶性自由基和轨道

The soluble radical and orbits of certain maps on finite groups

论文作者

Popović, David, Wilson, John S.

论文摘要

对于每个元素,有限组$ g $中的每个元素$ u $定义了$θ_U\ colon g \ to g $ to g $ by $θ_U(g)= [g^{ - u},g] $,并设置$θ_g(u)= \ {g \ {g \ in g \midθ_u^n(g)in g \ midθ_u^n(g)= g \ hbox n} n} n} n} n} n} n} n} n} n} n。然后$θ_U$诱导$θ_g(u)$的排列;令$β_G(u)$为$ \ {1 \} $以外的轨道数。基于J.N.的工作布雷,R.A。威尔逊和第二作者,我们表明,有限群$ g $的可溶性激进分子的索引在$ 2 $ emlement $ u $的$β_g(u)$的值方面是有限的。

For each element $u$ in a finite group $G$ define a map $θ_u\colon G\to G$ by $θ_u(g)=[g^{-u},g]$ and set $Θ_G(u)=\{g\in G\mid θ_u^n(g)=g \hbox{ for some } n>0\}$. Then $θ_u$ induces a permutation of $Θ_G(u)$; let $β_G(u)$ be the number of orbits apart from $\{1\}$. Building on work of J.N. Bray, R.A. Wilson and the second author, we show that the index of the soluble radical of a finite group $G$ is bounded in terms of the values of $β_G(u)$ for $2$-elements $u$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源