论文标题

可逆的多种学习降低维度

Invertible Manifold Learning for Dimension Reduction

论文作者

Li, Siyuan, Lin, Haitao, Zang, Zelin, Wu, Lirong, Xia, Jun, Li, Stan Z.

论文摘要

降低(DR)旨在通过保留基本信息来学习高维数据的低维表示。在多种学习的背景下,我们定义了无信息的DR的表示形式正式保留了数据歧管的拓扑和几何特性,并提出了一种新型的两阶段DR方法,称为可逆歧管学习(INV-ML),以弥合理论信息 - 损坏和实践DR之间的差距。第一阶段包括同构稀疏坐标转换,以学习低维表示而不破坏拓扑结构和局部等轴测限制以保留局部几何形状。在第二阶段,在过度的DR场景中,实施了线性压缩,以实现目标维度和所产生的信息损失之间的权衡。实验是在七个数据集上进行的,具有INV-ML的神经网络实现,称为I-ML-enc。从经验上讲,与典型的现有方法相比,I-ML-ENC达到了可逆的DR,并揭示了学到的歧管的特征。通过现实世界数据集上的潜在空间插值,我们发现本地邻居近似的切线空间的可靠性是基于歧管的DR算法成功的关键。

Dimension reduction (DR) aims to learn low-dimensional representations of high-dimensional data with the preservation of essential information. In the context of manifold learning, we define that the representation after information-lossless DR preserves the topological and geometric properties of data manifolds formally, and propose a novel two-stage DR method, called invertible manifold learning (inv-ML) to bridge the gap between theoretical information-lossless and practical DR. The first stage includes a homeomorphic sparse coordinate transformation to learn low-dimensional representations without destroying topology and a local isometry constraint to preserve local geometry. In the second stage, a linear compression is implemented for the trade-off between the target dimension and the incurred information loss in excessive DR scenarios. Experiments are conducted on seven datasets with a neural network implementation of inv-ML, called i-ML-Enc. Empirically, i-ML-Enc achieves invertible DR in comparison with typical existing methods as well as reveals the characteristics of the learned manifolds. Through latent space interpolation on real-world datasets, we find that the reliability of tangent space approximated by the local neighborhood is the key to the success of manifold-based DR algorithms.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源