论文标题

计算NNLO上O(n)对称模型的关键指数的衍生膨胀

Derivative expansion for computing critical exponents of O(N) symmetric models at NNLO

论文作者

Péli, Zoltán

论文摘要

我们将有效操作的衍生范围扩展在确切的重量化组方程中最高第四阶,以$ d = 3 $ euclidean dimensions中的$ z_2 $和$ o(n)$对称标量模型。我们使用该场中的多项式扩展计算关键指数$ν$,$η$和$ω$。我们获得了使用两个在ERG计算中广泛使用的调节器的指数的预测。我们应用Wynn的Epsilon算法来改善关键指数的预测,超越了衍生物扩展的近代临时订单预测。

We apply the derivative expansion of the effective action in the exact renormalization group equation up to fourth order to the $Z_2$ and $O(N)$ symmetric scalar models in $d=3$ Euclidean dimensions. We compute the critical exponents $ν$, $η$ and $ω$ using polynomial expansion in the field. We obtain our predictions for the exponents employing two regulators widely used in ERG computations. We apply Wynn's epsilon algorithm to improve the predictions for the critical exponents, extrapolating beyond the next-to-next-to-leading order prediction of the derivative expansion.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源