论文标题

自动扬声器验证的基于纹理的演示攻击检测检测

Texture-based Presentation Attack Detection for Automatic Speaker Verification

论文作者

Gonzalez-Soler, Lazaro J., Patino, Jose, Gomez-Barrero, Marta, Todisco, Massimiliano, Busch, Christoph, Evans, Nicholas

论文摘要

如今,生物识别系统已在广泛的应用中使用。它们提供了高度的安全性和效率,并且在许多情况下都非常友好。尽管有这些和其他优势,但尤其是自动扬声器验证(ASV)系统的生物识别系统可能很容易受到攻击演示。最新的ASVSPOOF 2019竞赛表明,通过基于合奏分类器的演示攻击检测(PAD)方法,可以可靠地检测到大多数形式的攻击。但是,这些从根本上取决于整体中系统的互补性。随着提高PAD溶液的普遍性的动机,本文报告了我们对应用于语音谱图图像分析的纹理描述符的探索。特别是,我们提出了一个基于生成模型的常见Fisher载体特征空间。实验结果表明了我们的方法的合理性:最多有100个善意演示中有16个被拒绝,而仅接受100个攻击介绍。

Biometric systems are nowadays employed across a broad range of applications. They provide high security and efficiency and, in many cases, are user friendly. Despite these and other advantages, biometric systems in general and Automatic speaker verification (ASV) systems in particular can be vulnerable to attack presentations. The most recent ASVSpoof 2019 competition showed that most forms of attacks can be detected reliably with ensemble classifier-based presentation attack detection (PAD) approaches. These, though, depend fundamentally upon the complementarity of systems in the ensemble. With the motivation to increase the generalisability of PAD solutions, this paper reports our exploration of texture descriptors applied to the analysis of speech spectrogram images. In particular, we propose a common fisher vector feature space based on a generative model. Experimental results show the soundness of our approach: at most, 16 in 100 bona fide presentations are rejected whereas only one in 100 attack presentations are accepted.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源