论文标题
单分子定向定位显微镜I:基本限制
Single-molecule orientation localization microscopy I: fundamental limits
论文作者
论文摘要
由于单分子实验中实质性的光子射击噪声,精确测量单个荧光团的三维位置和方向是具有挑战性的。面对这项有限的光子预算,已经开发了许多技术来将2D和3D位置以及2D和3D方向信息编码为荧光图像。在这项工作中,我们适应了经典和量子估计理论,并提出了一个数学框架,以得出最佳的精度,以测量任何固定成像系统的偶极样发射器的位置和方向。我们发现,不可能设计一种实现所有可能旋转运动的最大灵敏度极限的仪器。此外,我们的矢量偶极成像模型表明,最佳的量子限制定位精度比标量单极模型所建议的差异约4-8%。总体而言,我们得出的结论是,在所有可能的2D和3D定位和方向测量任务中,无法优化单个仪器,以最高精度。
Precisely measuring the three-dimensional position and orientation of individual fluorophores is challenging due to the substantial photon shot noise in single-molecule experiments. Facing this limited photon budget, numerous techniques have been developed to encode 2D and 3D position and 2D and 3D orientation information into fluorescence images. In this work, we adapt classical and quantum estimation theory and propose a mathematical framework to derive the best possible precision for measuring the position and orientation of dipole-like emitters for any fixed imaging system. We find that it is impossible to design an instrument that achieves the maximum sensitivity limit for measuring all possible rotational motions. Further, our vectorial dipole imaging model shows that the best quantum-limited localization precision is ~4-8% worse than that suggested by a scalar monopole model. Overall, we conclude that no single instrument can be optimized for maximum precision across all possible 2D and 3D localization and orientation measurement tasks.