论文标题

3D公理A流的平稳结合类

Smooth conjugacy classes of 3D Axiom A flows

论文作者

Florio, Anna, Leguil, Martin

论文摘要

We show a rigidity result for 3-dimensional contact Axiom A flows: given two 3D contact Axiom A flows $Φ_1,Φ_2$ whose restrictions $Φ_1|_{Λ_1},Φ_2|_{Λ_2}$ to basic sets $Λ_1,Λ_2$ are orbit equivalent, we prove that if periodic orbits in correspondence have the same长度,然后结合与流量一样规律并尊重接触结构,从而扩大了由于费尔德曼·恩斯坦(Feldman-ornstein)的先前结果[21]。一些想法让人联想到奥科的工作[51]。作为应用程序,我们表明,两个没有蚀的开放分散台球的台球地图,并具有相同的长度光谱。

We show a rigidity result for 3-dimensional contact Axiom A flows: given two 3D contact Axiom A flows $Φ_1,Φ_2$ whose restrictions $Φ_1|_{Λ_1},Φ_2|_{Λ_2}$ to basic sets $Λ_1,Λ_2$ are orbit equivalent, we prove that if periodic orbits in correspondence have the same length, then the conjugacy is as regular as the flows and respects the contact structure, extending a previous result due to Feldman-Ornstein [21]. Some of the ideas are reminiscent of the work of Otal [51]. As an application, we show that the billiard maps of two open dispersing billiards without eclipse and with the same marked length spectrum are smoothly conjugated.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源