论文标题

关于平均观测,空间平均值和爱因斯坦 - 特拉斯模型中的染色器近似之间的关系

On the relationship between mean observations, spatial averages and the Dyer-Roeder approximation in Einstein-Straus models

论文作者

Koksbang, S. M.

论文摘要

考虑了不同爱因斯坦 - 特拉斯模型中的红移和红移距离关系。具体而言,将这些可观察到的沿不同特定模型中1000光线的可观察到的平均值与基于基于空间平均的染色器近似和关系的预测进行了比较。结果表明,在某些限制中,包括文献中早期研究的局限性,基于空间平均值的染色器近似和关系相互彼此一致,这是关于红移和红移距离关系的良好精确性,并对精确关系的平均值做出了良好的预测。在两种方法不同意的限制下,染色器近似显然会产生真正平均值的更好近似。这是通过证明边界项和综合萨克 - 沃尔夫贡献的效果来解释的,但指出结果似乎对其他瑞士芝士模型也有效。最后,提出了爱因斯坦 - 特拉斯模型中红移漂移的表达,并用于研究该数量的行为,特别是爱因斯坦 - 特拉斯模型。

The redshift and redshift-distance relation in different Einstein-Straus models are considered. Specifically, the mean of these observables along 1000 light rays in different specific models are compared with predictions based on the Dyer-Roeder approximation and relations based on spatial averaging. It is shown that in certain limits, including those studied earlier in the literature, the Dyer-Roeder approximation and relations based on spatial averages agree with each other to a good precision regarding the redshift and redshift-distance relation and make good predictions of the mean of the exact relations. In limits where the two methods disagree, the Dyer-Roeder approximation clearly yields the better approximation of the true mean. This is explained by demonstrating the effect of boundary terms and integrated Sachs-Wolfe contributions but it is pointed out that the result seems to be valid for other Swiss-cheese models as well. Lastly, an expression for the redshift drift in Einstein-Straus models is presented and used for studying the behavior of this quantity in particular Einstein-Straus models.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源