论文标题

Henin:学习在社交媒体上可解释的网络欺凌检测的异质神经相互作用网络

HENIN: Learning Heterogeneous Neural Interaction Networks for Explainable Cyberbullying Detection on Social Media

论文作者

Chen, Hsin-Yu, Li, Cheng-Te

论文摘要

在对网络欺凌的计算检测中,现有工作主要集中在构建一般的分类器上,这些分类器仅依赖于社交媒体会议的文本分析。尽管取得了经验的成功,但我们认为,重要的缺失作品是模型解释性,即为什么将特定的媒体会话视为网络欺凌。因此,在本文中,我们提出了一种新型的深层模型,异质的神经相互作用网络(HENIN),以解释网络欺凌检测。 Henin包含以下组成部分:评论编码器,征询后共同注意子网以及会话 - 会议和固定后的互动提取器。在真实数据集上进行的广泛实验不仅表现出Henin的有希望的表现,而且还强调了证据评论,因此可以理解为什么将媒体会话确定为网络欺凌。

In the computational detection of cyberbullying, existing work largely focused on building generic classifiers that rely exclusively on text analysis of social media sessions. Despite their empirical success, we argue that a critical missing piece is the model explainability, i.e., why a particular piece of media session is detected as cyberbullying. In this paper, therefore, we propose a novel deep model, HEterogeneous Neural Interaction Networks (HENIN), for explainable cyberbullying detection. HENIN contains the following components: a comment encoder, a post-comment co-attention sub-network, and session-session and post-post interaction extractors. Extensive experiments conducted on real datasets exhibit not only the promising performance of HENIN, but also highlight evidential comments so that one can understand why a media session is identified as cyberbullying.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源