论文标题

用细弹性丝润湿和包裹浮子液滴

Wetting and wrapping of a floating droplet by a thin elastic filament

论文作者

Prasath, S Ganga, Marthelot, Joel, Menon, Narayanan, Govindarajan, Rama

论文摘要

我们研究了通过另一种不混溶的流体的液滴在流体表面漂浮在流体表面上的薄弹性丝的润湿。该准2D实验系统是通过弹性纸将液滴润湿和包裹的较低维度对应物。该系统的简单性使我们能够通过测量接触角来研究液滴的部分润湿和包裹的现象学,这是丝的弹性,施加的张力和液滴的曲率的函数。我们发现,纯粹的几何理论很好地描述了系统中的机械平衡。细丝中应用张力和张力的估计值遵守了年轻的拉普拉斯 - 杜普雷关系的弹性版本。但是,接近接触线的曲率并未被几何理论捕获,这可能是由于接触线的3D效应。我们还发现,当高度弯曲的灯丝完全包裹液滴时,液滴丝接口处存在曲率连续性,从而导致无缝包裹,如3D液滴中所观察到的那样。

We study the wetting of a thin elastic filament floating on a fluid surface by a droplet of another, immiscible fluid. This quasi-2D experimental system is the lower-dimensional counterpart of the wetting and wrapping of a droplet by an elastic sheet. The simplicity of this system allows us to study the phenomenology of partial wetting and wrapping of the droplet by measuring angles of contact as a function of the elasticity of the filament, the applied tension and the curvature of the droplet. We find that a purely geometric theory gives a good description of the mechanical equilibria in the system. The estimates of applied tension and tension in the filament obey an elastic version of the Young-Laplace-Dupré relation. However, curvatures close to the contact line are not captured by the geometric theory, possibly because of 3D effects at the contact line. We also find that when a highly-bendable filament completely wraps the droplet, there is continuity of curvature at the droplet-filament interface, leading to seamless wrapping as observed in a 3D droplet.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源