论文标题
$ f(\ MATHCAL {R})$ GRAVITY中的分析费用BHS
Analytic charged BHs in $f(\mathcal{R})$ gravity
论文作者
论文摘要
在本文中,我们在考虑$ f(\ Mathcal {r})$引力理论的情况下寻求精确充电的球形对称黑洞(BHS)。这些BHS的特征是卷积和误差函数。这两个函数取决于集成的常数,该函数负责使这种解决方案偏离爱因斯坦一般相对论(GR)。构成麦克斯韦场的电荷电势的误差函数取决于集成的常数,当该常数消失时,我们无法以$ f(\ nathcal {r})$的较低顺序重现reissner-nordströmBH。这意味着我们无法在低阶曲面理论中重现Reissner-NordströmBh,即Gr限制$ f(\ Mathcal {r})= \ Mathcal {r} $,我们无法获得众所周知的收费的BH。我们研究了这些BHS的物理特性,并表明它是渐近接近的时空或接近ADS/DS时空。另外,我们计算出BHS的不变性,并表明奇异性比GR的BH的奇异性温和。此外,我们通过使用测量偏差来得出稳定性条件。此外,我们研究了BH的热力学,并研究了高阶曲面理论的影响。最后,我们证明所有BHS都是稳定的,并且通过使用奇数模式,其径向速度等于一个。
In this article, we seek exact charged spherically symmetric black holes (BHs) with considering $f(\mathcal{R})$ gravitational theory. These BHs are characterized by convolution and error functions. Those two functions depend on a constant of integration which is responsible to make such a solution deviate from the Einstein general relativity (GR). The error function which constitutes the charge potential of the Maxwell field depends on the constant of integration and when this constant is vanishing we can not reproduce the Reissner-Nordström BH in the lower order of $f(\mathcal{R})$. This means that we can not reproduce Reissner-Nordström BH in lower-order-curvature theory, i.e., in GR limit $f(\mathcal{R})=\mathcal{R}$, we can not get the well known charged BH. We study the physical properties of these BHs and show that it is asymptotically approached as a flat spacetime or approach AdS/dS spacetime. Also, we calculate the invariants of the BHS and show that the singularities are milder than those of BH's of GR. Additionally, we derive the stability condition through the use of geodesic deviation. Moreover, we study the thermodynamics of our BH and investigate the impact of the higher-order-curvature theory. Finally, we show that all the BHs are stable and have radial speed equal to one through the use of odd-type mode.