论文标题

无监督的3D大脑异常检测

Unsupervised 3D Brain Anomaly Detection

论文作者

Simarro, Jaime, de la Rosa, Ezequiel, Vyvere, Thijs Vande, Robben, David, Sima, Diana M.

论文摘要

异常检测(AD)是识别不符合学习数据分布的数据样本。因此,AD系统可以帮助医生确定病理学的存在,严重性和扩展。可以利用深层生成模型(例如生成对抗网络(GAN))来捕获解剖变异性。因此,以无监督的方式将任何离群值(即,掉入学习分布之外的样本)都可以被检测为异常。通过使用这种方法,我们不仅可以检测预期的或已知的病变,而且甚至可以揭示以前未被认可的生物标志物。据我们所知,这项研究例证了可以有效处理体积数据并检测一个单个模型中的3D脑异常的第一种AD方法。我们的建议是通过将最先进的3D GAN与改进训练步骤组合在一起获得的2D F-Anogan模型的体积且高确定的扩展。在使用来自创伤性脑损伤(TBI)患者的非对比度计算机断层扫描图像的实验中,该模型检测并定位了TBI异常,而ROC曲线下的面积约为75%。此外,我们测试了该方法检测其他异常情况的潜力,例如低质量的图像,预处理不准确,人工制品,甚至存在术后迹象(例如颅骨切除术或大脑分流)。该方法具有快速标记大量成像数据集异常的潜力,并识别新的生物标志物。

Anomaly detection (AD) is the identification of data samples that do not fit a learned data distribution. As such, AD systems can help physicians to determine the presence, severity, and extension of a pathology. Deep generative models, such as Generative Adversarial Networks (GANs), can be exploited to capture anatomical variability. Consequently, any outlier (i.e., sample falling outside of the learned distribution) can be detected as an abnormality in an unsupervised fashion. By using this method, we can not only detect expected or known lesions, but we can even unveil previously unrecognized biomarkers. To the best of our knowledge, this study exemplifies the first AD approach that can efficiently handle volumetric data and detect 3D brain anomalies in one single model. Our proposal is a volumetric and high-detail extension of the 2D f-AnoGAN model obtained by combining a state-of-the-art 3D GAN with refinement training steps. In experiments using non-contrast computed tomography images from traumatic brain injury (TBI) patients, the model detects and localizes TBI abnormalities with an area under the ROC curve of ~75%. Moreover, we test the potential of the method for detecting other anomalies such as low quality images, preprocessing inaccuracies, artifacts, and even the presence of post-operative signs (such as a craniectomy or a brain shunt). The method has potential for rapidly labeling abnormalities in massive imaging datasets, as well as identifying new biomarkers.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源