论文标题
Curbscan:使用多传感器融合的遏制检测和跟踪
CurbScan: Curb Detection and Tracking Using Multi-Sensor Fusion
论文作者
论文摘要
可靠的路缘检测对于城市环境中的安全自动驾驶至关重要。路缘检测和跟踪在车辆定位和路径计划中也很有用。过去的工作利用3D激光雷达传感器来确定准确的距离信息和路缘的几何属性。但是,这种方法需要密集的点云数据,并且也很容易受到道路和越野区域障碍的误报。在本文中,我们提出了一种通过从多个传感器的数据融合在一起的数据来检测和跟踪路缘的方法:稀疏激光雷达数据,单声道摄像头和低成本超声传感器。该检测算法基于单个3D激光雷达和用于检测候选路缘特征的单声道摄像头传感器,并有效地消除了周围静态和移动障碍物引起的误报。通过使用基于卡尔曼滤波器的预测和融合以及来自低成本超声传感器的横向距离信息,可以提高跟踪算法的检测精度。接下来,我们提出了一种拟合算法,该算法可为路边位置产生可靠的结果。最后,我们通过在不同的道路环境中进行测试并评估我们在真实车辆\脚注中的实现来证明解决方案的可行性{演示我们的算法已上传到YouTube:https://wwwwww.youtube.com/watch? https://www.youtube.com/watch?v=gd506rklfg8。}。我们的算法分别在4.5-22米和0-14米内维持超过90 \%的精度,分别为Kitti数据集和我们的数据集,并且在Nvidia Xavier板上的Intel I7 x86和100ms上,其平均每个处理时间约为10 ms。
Reliable curb detection is critical for safe autonomous driving in urban contexts. Curb detection and tracking are also useful in vehicle localization and path planning. Past work utilized a 3D LiDAR sensor to determine accurate distance information and the geometric attributes of curbs. However, such an approach requires dense point cloud data and is also vulnerable to false positives from obstacles present on both road and off-road areas. In this paper, we propose an approach to detect and track curbs by fusing together data from multiple sensors: sparse LiDAR data, a mono camera and low-cost ultrasonic sensors. The detection algorithm is based on a single 3D LiDAR and a mono camera sensor used to detect candidate curb features and it effectively removes false positives arising from surrounding static and moving obstacles. The detection accuracy of the tracking algorithm is boosted by using Kalman filter-based prediction and fusion with lateral distance information from low-cost ultrasonic sensors. We next propose a line-fitting algorithm that yields robust results for curb locations. Finally, we demonstrate the practical feasibility of our solution by testing in different road environments and evaluating our implementation in a real vehicle\footnote{Demo video clips demonstrating our algorithm have been uploaded to Youtube: https://www.youtube.com/watch?v=w5MwsdWhcy4, https://www.youtube.com/watch?v=Gd506RklfG8.}. Our algorithm maintains over 90\% accuracy within 4.5-22 meters and 0-14 meters for the KITTI dataset and our dataset respectively, and its average processing time per frame is approximately 10 ms on Intel i7 x86 and 100ms on NVIDIA Xavier board.