论文标题
夸克物质中的Quark物质腐烂
Electroweak decay of quark matter within dense astrophysical combustion flames
论文作者
论文摘要
我们研究了在燃烧火焰中发生的弱相互作用过程,该过程将密集的强化物质转化为紧凑型恒星中的夸克物质。使用Boltzmann方程,我们沿着火焰内部的一小元素的一小部分的演变,直到它达到火焰后部边界处的化学平衡为止。我们获得了所有相关弱相互作用过程的反应率和中微子发射,而无需对中微子退化。我们系统地分析了未燃烧的HADRONIC物质的初始条件,例如密度,温度,中微子诱捕和组成,重点是典型的天体物理场景,例如冷中子星,质子恒星和后的紧凑物体。我们发现,火焰中的温度在1纳秒的时间表中显着上升。 $ t $的增加在很大程度上取决于望子问题的最初陌生性,并且在较大的密度下往往更加剧烈。典型的最终值范围在$ 20 $和$ 60 \,\ mathrm {Mev} $之间。非副作用过程$ u + d \ rightarrow u + s $在冷星中始终占主导地位,但是在热对象中,$ u + e + e + e^{ - } \ leftrightArrow d + {ν_e} $变得相关,在某些情况下,占主导地位,近乎化学平衡。其他过程的速率是较小的数量级。我们发现,每个重子的中微子发射率非常大,导致每baryon的总能量释放为$ 2-60 \,\ mathrm {mev} $,沿火焰的形式为中微子。我们讨论结果的一些天体物理后果。
We study the weak interaction processes taking place within a combustion flame that converts dense hadronic matter into quark matter in a compact star. Using the Boltzmann equation we follow the evolution of a small element of just deconfined quark matter all along the flame interior until it reaches chemical equilibrium at the back boundary of the flame. We obtain the reaction rates and neutrino emissivities of all the relevant weak interaction processes without making any assumption about the neutrino degeneracy. We analyse systematically the role the initial conditions of unburnt hadronic matter, such as density, temperature, neutrino trapping and composition, focusing on typical astrophysical scenarios such as cold neutron stars, protoneutron stars, and post merger compact objects. We find that the temperature within the flame rises significantly in a timescale of 1 nanosecond. The increase in $T$ strongly depends on the initial strangeness of hadronic matter and tends to be more drastic at larger densities. Typical final values range between $20$ and $60 \, \mathrm{MeV}$. The nonleptonic process $u + d \rightarrow u + s$ is always dominant in cold stars, but in hot objects the process $u + e^{-} \leftrightarrow d + {ν_e}$ becomes relevant, and in some cases dominant, near chemical equilibrium. The rates for the other processes are orders of magnitude smaller. We find that the neutrino emissivity per baryon is very large, leading to a total energy release per baryon of $2-60 \, \mathrm{MeV}$ in the form of neutrinos along the flame. We discuss some astrophysical consequences of the results.