论文标题
神经网络和随机森林预测因子的罕见事件模拟
Rare-Event Simulation for Neural Network and Random Forest Predictors
论文作者
论文摘要
我们研究了一类问题的稀有事实模拟,这些问题通过现代机器学习工具(例如神经网络和随机森林)来定义目标击中关注的集合。这个问题是由于关于智能系统的安全评估,学习模型的鲁棒性量化以及对大规模模拟的其他潜在应用的快速研究而动机的,其中可以使用机器学习工具来近似复杂的稀有事件设置边界。我们研究了一种重要的采样方案,该方案将主要偏差和顺序混合整数编程中的主导点机械整合在一起,以定位基本的主导点。我们的方法适用于一系列神经网络体系结构,包括完全连接的层,整流的线性单元,归一化,合并和卷积层以及由标准决策树建造的随机森林。我们使用UCI机器学习存储库中的分类模型为我们的方法提供效率保证和数值证明。
We study rare-event simulation for a class of problems where the target hitting sets of interest are defined via modern machine learning tools such as neural networks and random forests. This problem is motivated from fast emerging studies on the safety evaluation of intelligent systems, robustness quantification of learning models, and other potential applications to large-scale simulation in which machine learning tools can be used to approximate complex rare-event set boundaries. We investigate an importance sampling scheme that integrates the dominating point machinery in large deviations and sequential mixed integer programming to locate the underlying dominating points. Our approach works for a range of neural network architectures including fully connected layers, rectified linear units, normalization, pooling and convolutional layers, and random forests built from standard decision trees. We provide efficiency guarantees and numerical demonstration of our approach using a classification model in the UCI Machine Learning Repository.