论文标题

缩放保证最接近的反事实解释

Scaling Guarantees for Nearest Counterfactual Explanations

论文作者

Mohammadi, Kiarash, Karimi, Amir-Hossein, Barthe, Gilles, Valera, Isabel

论文摘要

反事实解释(CFE)被广泛用于解释算法的决策,尤其是在结果决策背景下(例如贷款批准或审前保释)。在这种情况下,CFE的目标是为受算法决定影响的个人提供不同的结果(即最近的个体),其结果不同。但是,尽管越来越多的作品提出了计算CFE的算法,但这种方法要么缺乏距离的最佳性(即,它们不返回最近的个人)和完美的覆盖范围(即,它们不为所有个人提供CFE);或者他们无法处理复杂的模型,例如神经网络。在这项工作中,我们提供了一个基于混合企业编程(MIP)的框架,以计算具有可证明保证的最接近的反事实解释,并且与基于梯度的方法相当。我们对成人,Compas和信用数据集的实验表明,与以前的方法相比,我们的方法允许有效地计算具有距离保证和完美覆盖范围的不同CFE。

Counterfactual explanations (CFE) are being widely used to explain algorithmic decisions, especially in consequential decision-making contexts (e.g., loan approval or pretrial bail). In this context, CFEs aim to provide individuals affected by an algorithmic decision with the most similar individual (i.e., nearest individual) with a different outcome. However, while an increasing number of works propose algorithms to compute CFEs, such approaches either lack in optimality of distance (i.e., they do not return the nearest individual) and perfect coverage (i.e., they do not provide a CFE for all individuals); or they cannot handle complex models, such as neural networks. In this work, we provide a framework based on Mixed-Integer Programming (MIP) to compute nearest counterfactual explanations with provable guarantees and with runtimes comparable to gradient-based approaches. Our experiments on the Adult, COMPAS, and Credit datasets show that, in contrast with previous methods, our approach allows for efficiently computing diverse CFEs with both distance guarantees and perfect coverage.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源