论文标题
非平凡的$ t $ - 更改为符号极性空间的家庭
Non-trivial $t$-intersecting families for symplectic polar spaces
论文作者
论文摘要
令$ \ mathscr {p} $为有限字段$ \ mathbb {f} _q $和$ \ mathscr {p} _m $表示所有$ M $ M $ -MENSPACES的集合中的$ \ Mathscr {P} $。我们说$ t $ - 更新的$ \ mathscr {p} _m $的亚家族如果存在该家族的每个成员中包含的$ t $维二比子空间,则是微不足道的。在本文中,我们确定了$ \ Mathscr {p} _m $的最大尺寸非平地$ t $ tum-dyprosing的结构。
Let $\mathscr{P}$ be a symplectic polar space over a finite field $\mathbb{F}_q$, and $\mathscr{P}_m$ denote the set of all $m$-dimensional subspaces in $\mathscr{P}$. We say a $t$-intersecting subfamily of $\mathscr{P}_m$ is trivial if there exists a $t$-dimensional subspace contained in each member of this family. In this paper, we determine the structure of maximum sized non-trivial $t$-intersecting subfamilies of $\mathscr{P}_m$.