论文标题
从边缘计算到边缘网的道路上
On the Road from Edge Computing to the Edge Mesh
论文作者
论文摘要
如今,我们目睹了物联网(EC)的出现,众多设备在它们之间或与最终用户之间进行交互。大量设备会导致大量收集的数据,这些数据需要适当的处理。 “遗产”方法是依靠云,在该云中可以采用增加的计算资源来实现任何处理。但是,即使与云后端的通信持续了一秒钟,在某些情况下,网络中的问题或支持实时应用程序的需求需要减少响应/结果的延迟。边缘计算(EC)作为延迟问题的“求解器”(不仅)进入场景。任何处理都可以接近数据源,即在与IoT设备直接连接的EC节点上执行。因此,可以在网络边缘存在处理节点的生态系统,从而有机会在收集的数据上应用新颖的服务。在我们谈论一个完全自动化的生态系统之前,应应对各种挑战,在该系统中,EC节点可以合作或了解它们的状态以及环境,以便有效地为最终用户或应用程序服务。在本文中,我们对针对边缘网格(EM)的愿景的相关研究活动进行了调查,即对EC基础架构的智能掩盖。我们从必要的硬件开始介绍EC/EM框架的所有部分,并讨论EC节点功能的各个方面的研究结果。我们介绍用于数据,任务和资源管理的技术和理论,同时讨论了如何采用(深)机器学习和优化技术来解决各种问题。我们的目的是为新颖的研究提供一个起点,以结束有效的服务/应用程序,以开辟未来的EC形式的道路。
Nowadays, we are witnessing the advent of the Internet of Things (EC) with numerous devices performing interactions between them or with end users. The huge number of devices leads to huge volumes of collected data that demand the appropriate processing. The 'legacy' approach is to rely on Cloud where increased computational resources can be adopted to realize any processing. However, even if the communication with the Cloud back end lasts for some seconds there are cases where problems in the network or the need for supporting real time applications require a reduced latency in the provision of responses/outcomes. Edge Computing (EC) comes into the scene as the 'solver' of the latency problem (and not only). Any processing can be performed close to data sources, i.e., at EC nodes having direct connection with IoT devices. Hence, an ecosystem of processing nodes can be present at the edge of the network giving the opportunity to apply novel services upon the collected data. Various challenges should be met before we talk about a fully automated ecosystem where EC nodes can cooperate or understand the status of them and the environment to be capable of efficiently serving end users or applications. In this paper, we perform a survey of the relevant research activities targeting to support the vision of Edge Mesh (EM), i.e., a 'cover' of intelligence upon the EC infrastructure. We present all the parts of the EC/EM framework starting from the necessary hardware and discussing research outcomes in every aspect of EC nodes functioning. We present technologies and theories adopted for data, tasks and resource management while discussing how (deep) machine learning and optimization techniques are adopted to solve various problems. Our aim is to provide a starting point for novel research to conclude efficient services/applications opening up the path to realize the future EC form.