论文标题
平面图的空间嵌入数字和交叉数字
Unknotting numbers and crossing numbers of spatial embeddings of a planar graph
论文作者
论文摘要
众所周知,链接$ l $的Un -numbing number $ u(l)$小于或等于$ l $的交叉数字$ c(l)$的一半。我们表明,有一个平面图$ g $及其空间嵌入$ f $,使得$ f $的ut -unkotting number $ u(f)$ f $大于交叉数字$ c(f)$ f $的一半。我们研究平面图的空间嵌入数量和交叉数量之间的关系。
It is known that the unknotting number $u(L)$ of a link $L$ is less than or equal to half the crossing number $c(L)$ of $L$. We show that there are a planar graph $G$ and its spatial embedding $f$ such that the unknotting number $u(f)$ of $f$ is greater than half the crossing number $c(f)$ of $f$. We study relations between unknotting number and crossing number of spatial embedding of a planar graph in general.