论文标题

通过后平均学习联合学习:一种新的视角和实用算法

Federated Learning via Posterior Averaging: A New Perspective and Practical Algorithms

论文作者

Al-Shedivat, Maruan, Gillenwater, Jennifer, Xing, Eric, Rostamizadeh, Afshin

论文摘要

通常将联合学习作为一个优化问题,目的是通过在拥有本地数据的客户端设备上分配计算并指定全球目标的不同部分来最大程度地减少全球损失函数。我们提出了另一种观点,并将联合学习作为后推理问题,其目标是通过让客户设备每个人来推断其本地数据的后验来推断全球后部分布。尽管精确的推论通常是棘手的,但这种观点提供了一种在联合设置中搜索全球最佳选择的原则方法。此外,从分析联合二次目标开始,我们开发了一种计算和通信效率的后推理算法 - 联合后平均(FEDPA)。我们的算法使用MCMC在客户端上近似推断本地后代的推断,并有效地将其统计信息传达给服务器,后者使用它们来完善后验模式的全局估计。最后,我们表明FEDPA概括了联合平均(FedAvg),同样可以从自适应优化者中受益,并在四个现实且具有挑战性的基准测试基准上产生最新的结果,从而更快地将其融合到更好的Optima。

Federated learning is typically approached as an optimization problem, where the goal is to minimize a global loss function by distributing computation across client devices that possess local data and specify different parts of the global objective. We present an alternative perspective and formulate federated learning as a posterior inference problem, where the goal is to infer a global posterior distribution by having client devices each infer the posterior of their local data. While exact inference is often intractable, this perspective provides a principled way to search for global optima in federated settings. Further, starting with the analysis of federated quadratic objectives, we develop a computation- and communication-efficient approximate posterior inference algorithm -- federated posterior averaging (FedPA). Our algorithm uses MCMC for approximate inference of local posteriors on the clients and efficiently communicates their statistics to the server, where the latter uses them to refine a global estimate of the posterior mode. Finally, we show that FedPA generalizes federated averaging (FedAvg), can similarly benefit from adaptive optimizers, and yields state-of-the-art results on four realistic and challenging benchmarks, converging faster, to better optima.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源