论文标题

点云有效的远程卷积

Efficient Long-Range Convolutions for Point Clouds

论文作者

Peng, Yifan, Lin, Lin, Ying, Lexing, Zepeda-Núñez, Leonardo

论文摘要

在许多科学机器学习应用中,对点云的远程相互作用的有效处理是一个具有挑战性的问题。为了提取全球信息,通常需要较大的窗口大小,大量层和/或大量频道。这通常可以显着增加计算成本。在这项工作中,我们提出了一个新颖的神经网络层,该层直接包含了点云的远程信息。该层被称为远程卷积(LRC) - 层,利用卷积定理与非均匀的傅立叶变换相结合。简而言之,LRC层将点云移动到适当尺寸的常规网格,计算其傅立叶变换,将结果乘以一组可训练的傅立叶乘数,计算逆傅立叶变换,最后将结果插入结果回到点云。可以在几乎线性的时间内,相对于输入点的数量,可以在几乎线性的时间内执行全局的全面卷积操作。当与局部卷积结合使用时,LRC层是一种特别强大的工具,因为它们可以对短距离和远距离相互作用提供有效且无缝的处理。我们通过引入一种神经网络体系结构来展示此框架,该框架将LRC层与短距离卷积层相结合,以准确地学习与$ N $体内潜力相​​关的能量和力。我们还利用了诱导的两级分解,并提出了一种有效的策略,以减少样品数量来训练合并的结构。

The efficient treatment of long-range interactions for point clouds is a challenging problem in many scientific machine learning applications. To extract global information, one usually needs a large window size, a large number of layers, and/or a large number of channels. This can often significantly increase the computational cost. In this work, we present a novel neural network layer that directly incorporates long-range information for a point cloud. This layer, dubbed the long-range convolutional (LRC)-layer, leverages the convolutional theorem coupled with the non-uniform Fourier transform. In a nutshell, the LRC-layer mollifies the point cloud to an adequately sized regular grid, computes its Fourier transform, multiplies the result by a set of trainable Fourier multipliers, computes the inverse Fourier transform, and finally interpolates the result back to the point cloud. The resulting global all-to-all convolution operation can be performed in nearly-linear time asymptotically with respect to the number of input points. The LRC-layer is a particularly powerful tool when combined with local convolution as together they offer efficient and seamless treatment of both short and long range interactions. We showcase this framework by introducing a neural network architecture that combines LRC-layers with short-range convolutional layers to accurately learn the energy and force associated with a $N$-body potential. We also exploit the induced two-level decomposition and propose an efficient strategy to train the combined architecture with a reduced number of samples.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源