论文标题

H2O-NET:通过对抗领域适应和标签改进的自我监管的洪水分割

H2O-Net: Self-Supervised Flood Segmentation via Adversarial Domain Adaptation and Label Refinement

论文作者

Akiva, Peri, Purri, Matthew, Dana, Kristin, Tellman, Beth, Anderson, Tyler

论文摘要

通过高分辨率实时的准确洪水检测,高潜伏期卫星图像对于通过提供快速和可行的信息来防止生命丧失至关重要。有用的仪器和传感器只有低分辨率,低潜伏期卫星可用,区域重新访问期间最多为16天,从而使使用此类卫星不可靠的洪水警报系统。这项工作介绍了H2O网络,这是一种自我监督的深度学习方法,可通过在低潜伏期和高潜伏期卫星和粗到五个标签的细化之间弥合卫星和空中图像的洪水。 H2O-NET学会将信号与水存在高度相关,作为在高分辨率卫星图像中语义分割的域适应步骤。我们的工作还提出了一种自我实施机制,该机制不需要任何手注释,用于生成高质量的地面真相数据。我们证明,H2O-NET在卫星图像上的最新语义分割方法的表现分别高出10%和12%的像素准确性,并且在洪水分段的任务中分别高于MIOU。我们通过将在卫星图像训练的模型权重转移到无人机图像(一个高度不同的传感器和域)来强调模型的普遍性。

Accurate flood detection in near real time via high resolution, high latency satellite imagery is essential to prevent loss of lives by providing quick and actionable information. Instruments and sensors useful for flood detection are only available in low resolution, low latency satellites with region re-visit periods of up to 16 days, making flood alerting systems that use such satellites unreliable. This work presents H2O-Network, a self supervised deep learning method to segment floods from satellites and aerial imagery by bridging domain gap between low and high latency satellite and coarse-to-fine label refinement. H2O-Net learns to synthesize signals highly correlative with water presence as a domain adaptation step for semantic segmentation in high resolution satellite imagery. Our work also proposes a self-supervision mechanism, which does not require any hand annotation, used during training to generate high quality ground truth data. We demonstrate that H2O-Net outperforms the state-of-the-art semantic segmentation methods on satellite imagery by 10% and 12% pixel accuracy and mIoU respectively for the task of flood segmentation. We emphasize the generalizability of our model by transferring model weights trained on satellite imagery to drone imagery, a highly different sensor and domain.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源