论文标题

确定性整数分解的指数五分之一算法

An exponent one-fifth algorithm for deterministic integer factorisation

论文作者

Harvey, David

论文摘要

希特梅尔(Hittmeir)最近提出了一种确定性算法,该算法可证明计算$ n^{2/9+o(1)} $ bit操作的正整数$ n $的主要分解。在此突破之前,对于此问题,最著名的复杂性是$ n^{1/4+o(1)} $,结果可以追溯到1970年代。在本文中,我们进一步推动了Hittmeir的技术,获得了具有复杂性的严格,确定性的保理算法$ n^{1/5+o(1)} $。

Hittmeir recently presented a deterministic algorithm that provably computes the prime factorisation of a positive integer $N$ in $N^{2/9+o(1)}$ bit operations. Prior to this breakthrough, the best known complexity bound for this problem was $N^{1/4+o(1)}$, a result going back to the 1970s. In this paper we push Hittmeir's techniques further, obtaining a rigorous, deterministic factoring algorithm with complexity $N^{1/5+o(1)}$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源