论文标题

有条件变异自动编码器的异常检测

Anomaly Detection With Conditional Variational Autoencoders

论文作者

Pol, Adrian Alan, Berger, Victor, Cerminara, Gianluca, Germain, Cecile, Pierini, Maurizio

论文摘要

利用概率推断的快速进步,尤其是变异贝叶斯和变异自动编码器(VAE),用于异常检测(AD)任务仍然是一个开放的研究问题。先前的作品认为,仅使用Inlier的训练VAE模型不足,并且应大大修改该框架以区分异常实例。在这项工作中,我们利用了深层条件变异自动编码器(CVAE),并定义了一个原始损耗函数以及针对层次结构化数据AD的度量。我们激励的应用是一个现实世界中的问题:监视触发系统,这是CERN大型强子对撞机(LHC)的许多粒子物理实验的基本组成部分。在实验中,我们显示了这种方法在古典机器学习(ML)基准和应用程序中的出色性能。

Exploiting the rapid advances in probabilistic inference, in particular variational Bayes and variational autoencoders (VAEs), for anomaly detection (AD) tasks remains an open research question. Previous works argued that training VAE models only with inliers is insufficient and the framework should be significantly modified in order to discriminate the anomalous instances. In this work, we exploit the deep conditional variational autoencoder (CVAE) and we define an original loss function together with a metric that targets hierarchically structured data AD. Our motivating application is a real world problem: monitoring the trigger system which is a basic component of many particle physics experiments at the CERN Large Hadron Collider (LHC). In the experiments we show the superior performance of this method for classical machine learning (ML) benchmarks and for our application.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源